157 lines
6.3 KiB
C#
157 lines
6.3 KiB
C#
![]() |
// Licensed to the .NET Foundation under one or more agreements.
|
|||
|
// The .NET Foundation licenses this file to you under the MIT license.
|
|||
|
// See the LICENSE file in the project root for more information.
|
|||
|
|
|||
|
using System.Diagnostics;
|
|||
|
using System.Numerics;
|
|||
|
|
|||
|
namespace System
|
|||
|
{
|
|||
|
internal static partial class Number
|
|||
|
{
|
|||
|
// This is a port of the `DiyFp` implementation here: https://github.com/google/double-conversion/blob/a711666ddd063eb1e4b181a6cb981d39a1fc8bac/double-conversion/diy-fp.h
|
|||
|
// The backing structure and how it is used is described in more detail here: http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf
|
|||
|
|
|||
|
// This "Do It Yourself Floating Point" class implements a floating-point number with a ulong significand and an int exponent.
|
|||
|
// Normalized DiyFp numbers will have the most significant bit of the significand set.
|
|||
|
// Multiplication and Subtraction do not normalize their results.
|
|||
|
// DiyFp are not designed to contain special doubles (NaN and Infinity).
|
|||
|
internal readonly ref struct DiyFp
|
|||
|
{
|
|||
|
public const int DoubleImplicitBitIndex = 52;
|
|||
|
public const int SingleImplicitBitIndex = 23;
|
|||
|
|
|||
|
public const int SignificandSize = 64;
|
|||
|
|
|||
|
public readonly ulong f;
|
|||
|
public readonly int e;
|
|||
|
|
|||
|
// Computes the two boundaries of value.
|
|||
|
//
|
|||
|
// The bigger boundary (mPlus) is normalized.
|
|||
|
// The lower boundary has the same exponent as mPlus.
|
|||
|
//
|
|||
|
// Precondition:
|
|||
|
// The value encoded by value must be greater than 0.
|
|||
|
public static DiyFp CreateAndGetBoundaries(double value, out DiyFp mMinus, out DiyFp mPlus)
|
|||
|
{
|
|||
|
var result = new DiyFp(value);
|
|||
|
result.GetBoundaries(DoubleImplicitBitIndex, out mMinus, out mPlus);
|
|||
|
return result;
|
|||
|
}
|
|||
|
|
|||
|
// Computes the two boundaries of value.
|
|||
|
//
|
|||
|
// The bigger boundary (mPlus) is normalized.
|
|||
|
// The lower boundary has the same exponent as mPlus.
|
|||
|
//
|
|||
|
// Precondition:
|
|||
|
// The value encoded by value must be greater than 0.
|
|||
|
public static DiyFp CreateAndGetBoundaries(float value, out DiyFp mMinus, out DiyFp mPlus)
|
|||
|
{
|
|||
|
var result = new DiyFp(value);
|
|||
|
result.GetBoundaries(SingleImplicitBitIndex, out mMinus, out mPlus);
|
|||
|
return result;
|
|||
|
}
|
|||
|
|
|||
|
public DiyFp(double value)
|
|||
|
{
|
|||
|
//Debug.Assert(double.IsFinite(value));
|
|||
|
Debug.Assert(value > 0.0);
|
|||
|
f = ExtractFractionAndBiasedExponent(value, out e);
|
|||
|
}
|
|||
|
|
|||
|
public DiyFp(float value)
|
|||
|
{
|
|||
|
//Debug.Assert(float.IsFinite(value));
|
|||
|
Debug.Assert(value > 0.0f);
|
|||
|
f = ExtractFractionAndBiasedExponent(value, out e);
|
|||
|
}
|
|||
|
|
|||
|
public DiyFp(ulong f, int e)
|
|||
|
{
|
|||
|
this.f = f;
|
|||
|
this.e = e;
|
|||
|
}
|
|||
|
|
|||
|
public DiyFp Multiply(in DiyFp other)
|
|||
|
{
|
|||
|
// Simply "emulates" a 128-bit multiplication
|
|||
|
//
|
|||
|
// However: the resulting number only contains 64-bits. The least
|
|||
|
// signficant 64-bits are only used for rounding the most significant
|
|||
|
// 64-bits.
|
|||
|
|
|||
|
uint a = (uint)(f >> 32);
|
|||
|
uint b = (uint)(f);
|
|||
|
|
|||
|
uint c = (uint)(other.f >> 32);
|
|||
|
uint d = (uint)(other.f);
|
|||
|
|
|||
|
ulong ac = ((ulong)(a) * c);
|
|||
|
ulong bc = ((ulong)(b) * c);
|
|||
|
ulong ad = ((ulong)(a) * d);
|
|||
|
ulong bd = ((ulong)(b) * d);
|
|||
|
|
|||
|
ulong tmp = (bd >> 32) + (uint)(ad) + (uint)(bc);
|
|||
|
|
|||
|
// By adding (1UL << 31) to tmp, we round the final result.
|
|||
|
// Halfway cases will be rounded up.
|
|||
|
|
|||
|
tmp += (1U << 31);
|
|||
|
|
|||
|
return new DiyFp(ac + (ad >> 32) + (bc >> 32) + (tmp >> 32), e + other.e + SignificandSize);
|
|||
|
}
|
|||
|
|
|||
|
public DiyFp Normalize()
|
|||
|
{
|
|||
|
// This method is mainly called for normalizing boundaries.
|
|||
|
//
|
|||
|
// We deviate from the reference implementation by just using
|
|||
|
// our LeadingZeroCount function so that we only need to shift
|
|||
|
// and subtract once.
|
|||
|
|
|||
|
Debug.Assert(f != 0);
|
|||
|
int lzcnt = BitOperations.LeadingZeroCount(f);
|
|||
|
return new DiyFp(f << lzcnt, e - lzcnt);
|
|||
|
}
|
|||
|
|
|||
|
// The exponents of both numbers must be the same.
|
|||
|
// The significand of 'this' must be bigger than the significand of 'other'.
|
|||
|
// The result will not be normalized.
|
|||
|
public DiyFp Subtract(in DiyFp other)
|
|||
|
{
|
|||
|
Debug.Assert(e == other.e);
|
|||
|
Debug.Assert(f >= other.f);
|
|||
|
return new DiyFp(f - other.f, e);
|
|||
|
}
|
|||
|
|
|||
|
private void GetBoundaries(int implicitBitIndex, out DiyFp mMinus, out DiyFp mPlus)
|
|||
|
{
|
|||
|
mPlus = new DiyFp((f << 1) + 1, e - 1).Normalize();
|
|||
|
|
|||
|
// The boundary is closer if the sigificand is of the form:
|
|||
|
// f == 2^p-1
|
|||
|
//
|
|||
|
// Think of v = 1000e10 and v- = 9999e9
|
|||
|
// Then the boundary == (v - v-) / 2 is not just at a distance of 1e9 but at a distance of 1e8.
|
|||
|
// The only exception is for the smallest normal, where the largest denormal is at the same distance as its successor.
|
|||
|
//
|
|||
|
// Note: denormals have the same exponent as the smallest normals.
|
|||
|
|
|||
|
// We deviate from the reference implementation by just checking if the significand has only the implicit bit set.
|
|||
|
// In this scenario, we know that all the explicit bits are 0 and that the unbiased exponent is non-zero.
|
|||
|
if (f == (1UL << implicitBitIndex))
|
|||
|
{
|
|||
|
mMinus = new DiyFp((f << 2) - 1, e - 2);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
mMinus = new DiyFp((f << 1) - 1, e - 1);
|
|||
|
}
|
|||
|
|
|||
|
mMinus = new DiyFp(mMinus.f << (mMinus.e - mPlus.e), mPlus.e);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|