com.alicizax.unity.cysharp..../Number/Number.Formatting.cs
陈思海 4fbea560b5 init
2025-01-09 13:57:51 +08:00

2546 lines
105 KiB
C#

// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
#nullable disable
using System.Buffers.Text;
using System.Diagnostics;
using System.Globalization;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Text;
namespace System
{
// The Format methods provided by the numeric classes convert
// the numeric value to a string using the format string given by the
// format parameter. If the format parameter is null or
// an empty string, the number is formatted as if the string "G" (general
// format) was specified. The info parameter specifies the
// NumberFormatInfo instance to use when formatting the number. If the
// info parameter is null or omitted, the numeric formatting information
// is obtained from the current culture. The NumberFormatInfo supplies
// such information as the characters to use for decimal and thousand
// separators, and the spelling and placement of currency symbols in monetary
// values.
//
// Format strings fall into two categories: Standard format strings and
// user-defined format strings. A format string consisting of a single
// alphabetic character (A-Z or a-z), optionally followed by a sequence of
// digits (0-9), is a standard format string. All other format strings are
// used-defined format strings.
//
// A standard format string takes the form Axx, where A is an
// alphabetic character called the format specifier and xx is a
// sequence of digits called the precision specifier. The format
// specifier controls the type of formatting applied to the number and the
// precision specifier controls the number of significant digits or decimal
// places of the formatting operation. The following table describes the
// supported standard formats.
//
// C c - Currency format. The number is
// converted to a string that represents a currency amount. The conversion is
// controlled by the currency format information of the NumberFormatInfo
// used to format the number. The precision specifier indicates the desired
// number of decimal places. If the precision specifier is omitted, the default
// currency precision given by the NumberFormatInfo is used.
//
// D d - Decimal format. This format is
// supported for integral types only. The number is converted to a string of
// decimal digits, prefixed by a minus sign if the number is negative. The
// precision specifier indicates the minimum number of digits desired in the
// resulting string. If required, the number will be left-padded with zeros to
// produce the number of digits given by the precision specifier.
//
// E e Engineering (scientific) format.
// The number is converted to a string of the form
// "-d.ddd...E+ddd" or "-d.ddd...e+ddd", where each
// 'd' indicates a digit (0-9). The string starts with a minus sign if the
// number is negative, and one digit always precedes the decimal point. The
// precision specifier indicates the desired number of digits after the decimal
// point. If the precision specifier is omitted, a default of 6 digits after
// the decimal point is used. The format specifier indicates whether to prefix
// the exponent with an 'E' or an 'e'. The exponent is always consists of a
// plus or minus sign and three digits.
//
// F f Fixed point format. The number is
// converted to a string of the form "-ddd.ddd....", where each
// 'd' indicates a digit (0-9). The string starts with a minus sign if the
// number is negative. The precision specifier indicates the desired number of
// decimal places. If the precision specifier is omitted, the default numeric
// precision given by the NumberFormatInfo is used.
//
// G g - General format. The number is
// converted to the shortest possible decimal representation using fixed point
// or scientific format. The precision specifier determines the number of
// significant digits in the resulting string. If the precision specifier is
// omitted, the number of significant digits is determined by the type of the
// number being converted (10 for int, 19 for long, 7 for
// float, 15 for double, 19 for Currency, and 29 for
// Decimal). Trailing zeros after the decimal point are removed, and the
// resulting string contains a decimal point only if required. The resulting
// string uses fixed point format if the exponent of the number is less than
// the number of significant digits and greater than or equal to -4. Otherwise,
// the resulting string uses scientific format, and the case of the format
// specifier controls whether the exponent is prefixed with an 'E' or an 'e'.
//
// N n Number format. The number is
// converted to a string of the form "-d,ddd,ddd.ddd....", where
// each 'd' indicates a digit (0-9). The string starts with a minus sign if the
// number is negative. Thousand separators are inserted between each group of
// three digits to the left of the decimal point. The precision specifier
// indicates the desired number of decimal places. If the precision specifier
// is omitted, the default numeric precision given by the
// NumberFormatInfo is used.
//
// X x - Hexadecimal format. This format is
// supported for integral types only. The number is converted to a string of
// hexadecimal digits. The format specifier indicates whether to use upper or
// lower case characters for the hexadecimal digits above 9 ('X' for 'ABCDEF',
// and 'x' for 'abcdef'). The precision specifier indicates the minimum number
// of digits desired in the resulting string. If required, the number will be
// left-padded with zeros to produce the number of digits given by the
// precision specifier.
//
// Some examples of standard format strings and their results are shown in the
// table below. (The examples all assume a default NumberFormatInfo.)
//
// Value Format Result
// 12345.6789 C $12,345.68
// -12345.6789 C ($12,345.68)
// 12345 D 12345
// 12345 D8 00012345
// 12345.6789 E 1.234568E+004
// 12345.6789 E10 1.2345678900E+004
// 12345.6789 e4 1.2346e+004
// 12345.6789 F 12345.68
// 12345.6789 F0 12346
// 12345.6789 F6 12345.678900
// 12345.6789 G 12345.6789
// 12345.6789 G7 12345.68
// 123456789 G7 1.234568E8
// 12345.6789 N 12,345.68
// 123456789 N4 123,456,789.0000
// 0x2c45e x 2c45e
// 0x2c45e X 2C45E
// 0x2c45e X8 0002C45E
//
// Format strings that do not start with an alphabetic character, or that start
// with an alphabetic character followed by a non-digit, are called
// user-defined format strings. The following table describes the formatting
// characters that are supported in user defined format strings.
//
//
// 0 - Digit placeholder. If the value being
// formatted has a digit in the position where the '0' appears in the format
// string, then that digit is copied to the output string. Otherwise, a '0' is
// stored in that position in the output string. The position of the leftmost
// '0' before the decimal point and the rightmost '0' after the decimal point
// determines the range of digits that are always present in the output
// string.
//
// # - Digit placeholder. If the value being
// formatted has a digit in the position where the '#' appears in the format
// string, then that digit is copied to the output string. Otherwise, nothing
// is stored in that position in the output string.
//
// . - Decimal point. The first '.' character
// in the format string determines the location of the decimal separator in the
// formatted value; any additional '.' characters are ignored. The actual
// character used as a the decimal separator in the output string is given by
// the NumberFormatInfo used to format the number.
//
// , - Thousand separator and number scaling.
// The ',' character serves two purposes. First, if the format string contains
// a ',' character between two digit placeholders (0 or #) and to the left of
// the decimal point if one is present, then the output will have thousand
// separators inserted between each group of three digits to the left of the
// decimal separator. The actual character used as a the decimal separator in
// the output string is given by the NumberFormatInfo used to format the
// number. Second, if the format string contains one or more ',' characters
// immediately to the left of the decimal point, or after the last digit
// placeholder if there is no decimal point, then the number will be divided by
// 1000 times the number of ',' characters before it is formatted. For example,
// the format string '0,,' will represent 100 million as just 100. Use of the
// ',' character to indicate scaling does not also cause the formatted number
// to have thousand separators. Thus, to scale a number by 1 million and insert
// thousand separators you would use the format string '#,##0,,'.
//
// % - Percentage placeholder. The presence of
// a '%' character in the format string causes the number to be multiplied by
// 100 before it is formatted. The '%' character itself is inserted in the
// output string where it appears in the format string.
//
// E+ E- e+ e- - Scientific notation.
// If any of the strings 'E+', 'E-', 'e+', or 'e-' are present in the format
// string and are immediately followed by at least one '0' character, then the
// number is formatted using scientific notation with an 'E' or 'e' inserted
// between the number and the exponent. The number of '0' characters following
// the scientific notation indicator determines the minimum number of digits to
// output for the exponent. The 'E+' and 'e+' formats indicate that a sign
// character (plus or minus) should always precede the exponent. The 'E-' and
// 'e-' formats indicate that a sign character should only precede negative
// exponents.
//
// \ - Literal character. A backslash character
// causes the next character in the format string to be copied to the output
// string as-is. The backslash itself isn't copied, so to place a backslash
// character in the output string, use two backslashes (\\) in the format
// string.
//
// 'ABC' "ABC" - Literal string. Characters
// enclosed in single or double quotation marks are copied to the output string
// as-is and do not affect formatting.
//
// ; - Section separator. The ';' character is
// used to separate sections for positive, negative, and zero numbers in the
// format string.
//
// Other - All other characters are copied to
// the output string in the position they appear.
//
// For fixed point formats (formats not containing an 'E+', 'E-', 'e+', or
// 'e-'), the number is rounded to as many decimal places as there are digit
// placeholders to the right of the decimal point. If the format string does
// not contain a decimal point, the number is rounded to the nearest
// integer. If the number has more digits than there are digit placeholders to
// the left of the decimal point, the extra digits are copied to the output
// string immediately before the first digit placeholder.
//
// For scientific formats, the number is rounded to as many significant digits
// as there are digit placeholders in the format string.
//
// To allow for different formatting of positive, negative, and zero values, a
// user-defined format string may contain up to three sections separated by
// semicolons. The results of having one, two, or three sections in the format
// string are described in the table below.
//
// Sections:
//
// One - The format string applies to all values.
//
// Two - The first section applies to positive values
// and zeros, and the second section applies to negative values. If the number
// to be formatted is negative, but becomes zero after rounding according to
// the format in the second section, then the resulting zero is formatted
// according to the first section.
//
// Three - The first section applies to positive
// values, the second section applies to negative values, and the third section
// applies to zeros. The second section may be left empty (by having no
// characters between the semicolons), in which case the first section applies
// to all non-zero values. If the number to be formatted is non-zero, but
// becomes zero after rounding according to the format in the first or second
// section, then the resulting zero is formatted according to the third
// section.
//
// For both standard and user-defined formatting operations on values of type
// float and double, if the value being formatted is a NaN (Not
// a Number) or a positive or negative infinity, then regardless of the format
// string, the resulting string is given by the NaNSymbol,
// PositiveInfinitySymbol, or NegativeInfinitySymbol property of
// the NumberFormatInfo used to format the number.
internal static partial class Number
{
internal const int DecimalPrecision = 29; // Decimal.DecCalc also uses this value
// SinglePrecision and DoublePrecision represent the maximum number of digits required
// to guarantee that any given Single or Double can roundtrip. Some numbers may require
// less, but none will require more.
private const int SinglePrecision = 9;
private const int DoublePrecision = 17;
// SinglePrecisionCustomFormat and DoublePrecisionCustomFormat are used to ensure that
// custom format strings return the same string as in previous releases when the format
// would return x digits or less (where x is the value of the corresponding constant).
// In order to support more digits, we would need to update ParseFormatSpecifier to pre-parse
// the format and determine exactly how many digits are being requested and whether they
// represent "significant digits" or "digits after the decimal point".
private const int SinglePrecisionCustomFormat = 7;
private const int DoublePrecisionCustomFormat = 15;
private const int DefaultPrecisionExponentialFormat = 6;
private const int MaxUInt32DecDigits = 10;
private const int CharStackBufferSize = 32;
private const string PosNumberFormat = "#";
private static readonly string[] s_singleDigitStringCache = { "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" };
private static readonly string[] s_posCurrencyFormats =
{
"$#", "#$", "$ #", "# $"
};
private static readonly string[] s_negCurrencyFormats =
{
"($#)", "-$#", "$-#", "$#-",
"(#$)", "-#$", "#-$", "#$-",
"-# $", "-$ #", "# $-", "$ #-",
"$ -#", "#- $", "($ #)", "(# $)"
};
private static readonly string[] s_posPercentFormats =
{
"# %", "#%", "%#", "% #"
};
private static readonly string[] s_negPercentFormats =
{
"-# %", "-#%", "-%#",
"%-#", "%#-",
"#-%", "#%-",
"-% #", "# %-", "% #-",
"% -#", "#- %"
};
private static readonly string[] s_negNumberFormats =
{
"(#)", "-#", "- #", "#-", "# -",
};
public static unsafe string FormatDecimal(decimal value, ReadOnlySpan<char> format, NumberFormatInfo info)
{
char fmt = ParseFormatSpecifier(format, out int digits);
byte* pDigits = stackalloc byte[DecimalNumberBufferLength];
NumberBuffer number = new NumberBuffer(NumberBufferKind.Decimal, pDigits, DecimalNumberBufferLength);
DecimalToNumber(ref value, ref number);
char* stackPtr = stackalloc char[CharStackBufferSize];
ValueStringBuilder sb = new ValueStringBuilder(new Span<char>(stackPtr, CharStackBufferSize));
if (fmt != 0)
{
NumberToString(ref sb, ref number, fmt, digits, info);
}
else
{
NumberToStringFormat(ref sb, ref number, format, info);
}
return sb.ToString();
}
public static unsafe bool TryFormatDecimal(decimal value, ReadOnlySpan<char> format, NumberFormatInfo info, Span<char> destination, out int charsWritten)
{
char fmt = ParseFormatSpecifier(format, out int digits);
byte* pDigits = stackalloc byte[DecimalNumberBufferLength];
NumberBuffer number = new NumberBuffer(NumberBufferKind.Decimal, pDigits, DecimalNumberBufferLength);
DecimalToNumber(ref value, ref number);
char* stackPtr = stackalloc char[CharStackBufferSize];
ValueStringBuilder sb = new ValueStringBuilder(new Span<char>(stackPtr, CharStackBufferSize));
if (fmt != 0)
{
NumberToString(ref sb, ref number, fmt, digits, info);
}
else
{
NumberToStringFormat(ref sb, ref number, format, info);
}
return sb.TryCopyTo(destination, out charsWritten);
}
internal static unsafe void DecimalToNumber(ref decimal d, ref NumberBuffer number)
{
byte* buffer = number.GetDigitsPointer();
number.DigitsCount = DecimalPrecision;
number.IsNegative = d.IsNegative();
byte* p = buffer + DecimalPrecision;
while ((d.Mid() | d.High()) != 0)
{
p = UInt32ToDecChars(p, DecimalEx.DecDivMod1E9(ref d), 9);
}
p = UInt32ToDecChars(p, d.Low(), 0);
int i = (int)((buffer + DecimalPrecision) - p);
number.DigitsCount = i;
number.Scale = i - d.Scale();
byte* dst = number.GetDigitsPointer();
while (--i >= 0)
{
*dst++ = *p++;
}
*dst = (byte)('\0');
number.CheckConsistency();
}
public static string FormatDouble(double value, string format, NumberFormatInfo info)
{
Span<char> stackBuffer = stackalloc char[CharStackBufferSize];
var sb = new ValueStringBuilder(stackBuffer);
return FormatDouble(ref sb, value, format.AsSpan(), info) ?? sb.ToString();
}
public static bool TryFormatDouble(double value, ReadOnlySpan<char> format, NumberFormatInfo info, Span<char> destination, out int charsWritten)
{
Span<char> stackBuffer = stackalloc char[CharStackBufferSize];
var sb = new ValueStringBuilder(stackBuffer);
string s = FormatDouble(ref sb, value, format, info);
return s != null ?
TryCopyTo(s, destination, out charsWritten) :
sb.TryCopyTo(destination, out charsWritten);
}
private static int GetFloatingPointMaxDigitsAndPrecision(char fmt, ref int precision, NumberFormatInfo info, out bool isSignificantDigits)
{
if (fmt == 0)
{
isSignificantDigits = true;
return precision;
}
int maxDigits = precision;
switch (fmt)
{
case 'C':
case 'c':
{
// The currency format uses the precision specifier to indicate the number of
// decimal digits to format. This defaults to NumberFormatInfo.CurrencyDecimalDigits.
if (precision == -1)
{
precision = info.CurrencyDecimalDigits;
}
isSignificantDigits = false;
break;
}
case 'E':
case 'e':
{
// The exponential format uses the precision specifier to indicate the number of
// decimal digits to format. This defaults to 6. However, the exponential format
// also always formats a single integral digit, so we need to increase the precision
// specifier and treat it as the number of significant digits to account for this.
if (precision == -1)
{
precision = DefaultPrecisionExponentialFormat;
}
precision++;
isSignificantDigits = true;
break;
}
case 'F':
case 'f':
case 'N':
case 'n':
{
// The fixed-point and number formats use the precision specifier to indicate the number
// of decimal digits to format. This defaults to NumberFormatInfo.NumberDecimalDigits.
if (precision == -1)
{
precision = info.NumberDecimalDigits;
}
isSignificantDigits = false;
break;
}
case 'G':
case 'g':
{
// The general format uses the precision specifier to indicate the number of significant
// digits to format. This defaults to the shortest roundtrippable string. Additionally,
// given that we can't return zero significant digits, we treat 0 as returning the shortest
// roundtrippable string as well.
if (precision == 0)
{
precision = -1;
}
isSignificantDigits = true;
break;
}
case 'P':
case 'p':
{
// The percent format uses the precision specifier to indicate the number of
// decimal digits to format. This defaults to NumberFormatInfo.PercentDecimalDigits.
// However, the percent format also always multiplies the number by 100, so we need
// to increase the precision specifier to ensure we get the appropriate number of digits.
if (precision == -1)
{
precision = info.PercentDecimalDigits;
}
precision += 2;
isSignificantDigits = false;
break;
}
case 'R':
case 'r':
{
// The roundtrip format ignores the precision specifier and always returns the shortest
// roundtrippable string.
precision = -1;
isSignificantDigits = true;
break;
}
default:
{
throw new FormatException("SR.Argument_BadFormatSpecifier");
}
}
return maxDigits;
}
/// <summary>Formats the specified value according to the specified format and info.</summary>
/// <returns>
/// Non-null if an existing string can be returned, in which case the builder will be unmodified.
/// Null if no existing string was returned, in which case the formatted output is in the builder.
/// </returns>
private static unsafe string FormatDouble(ref ValueStringBuilder sb, double value, ReadOnlySpan<char> format, NumberFormatInfo info)
{
if (!FloatEx.IsFinite(value))
{
if (double.IsNaN(value))
{
return info.NaNSymbol;
}
return FloatEx.IsNegative(value) ? info.NegativeInfinitySymbol : info.PositiveInfinitySymbol;
}
char fmt = ParseFormatSpecifier(format, out int precision);
byte* pDigits = stackalloc byte[DoubleNumberBufferLength];
if (fmt == '\0')
{
// For back-compat we currently specially treat the precision for custom
// format specifiers. The constant has more details as to why.
precision = DoublePrecisionCustomFormat;
}
NumberBuffer number = new NumberBuffer(NumberBufferKind.FloatingPoint, pDigits, DoubleNumberBufferLength);
number.IsNegative = FloatEx.IsNegative(value);
// We need to track the original precision requested since some formats
// accept values like 0 and others may require additional fixups.
int nMaxDigits = GetFloatingPointMaxDigitsAndPrecision(fmt, ref precision, info, out bool isSignificantDigits);
if ((value != 0.0) && (!isSignificantDigits || !Grisu3.TryRunDouble(value, precision, ref number)))
{
Dragon4Double(value, precision, isSignificantDigits, ref number);
}
number.CheckConsistency();
// When the number is known to be roundtrippable (either because we requested it be, or
// because we know we have enough digits to satisfy roundtrippability), we should validate
// that the number actually roundtrips back to the original result.
Debug.Assert(((precision != -1) && (precision < DoublePrecision)) || (BitConverter.DoubleToInt64Bits(value) == BitConverter.DoubleToInt64Bits(NumberToDouble(ref number))));
if (fmt != 0)
{
if (precision == -1)
{
Debug.Assert((fmt == 'G') || (fmt == 'g') || (fmt == 'R') || (fmt == 'r'));
// For the roundtrip and general format specifiers, when returning the shortest roundtrippable
// string, we need to update the maximum number of digits to be the greater of number.DigitsCount
// or DoublePrecision. This ensures that we continue returning "pretty" strings for values with
// less digits. One example this fixes is "-60", which would otherwise be formatted as "-6E+01"
// since DigitsCount would be 1 and the formatter would almost immediately switch to scientific notation.
nMaxDigits = Math.Max(number.DigitsCount, DoublePrecision);
}
NumberToString(ref sb, ref number, fmt, nMaxDigits, info);
}
else
{
Debug.Assert(precision == DoublePrecisionCustomFormat);
NumberToStringFormat(ref sb, ref number, format, info);
}
return null;
}
public static string FormatSingle(float value, string format, NumberFormatInfo info)
{
Span<char> stackBuffer = stackalloc char[CharStackBufferSize];
var sb = new ValueStringBuilder(stackBuffer);
return FormatSingle(ref sb, value, format.AsSpan(), info) ?? sb.ToString();
}
public static bool TryFormatSingle(float value, ReadOnlySpan<char> format, NumberFormatInfo info, Span<char> destination, out int charsWritten)
{
Span<char> stackBuffer = stackalloc char[CharStackBufferSize];
var sb = new ValueStringBuilder(stackBuffer);
string s = FormatSingle(ref sb, value, format, info);
return s != null ?
TryCopyTo(s, destination, out charsWritten) :
sb.TryCopyTo(destination, out charsWritten);
}
/// <summary>Formats the specified value according to the specified format and info.</summary>
/// <returns>
/// Non-null if an existing string can be returned, in which case the builder will be unmodified.
/// Null if no existing string was returned, in which case the formatted output is in the builder.
/// </returns>
private static unsafe string FormatSingle(ref ValueStringBuilder sb, float value, ReadOnlySpan<char> format, NumberFormatInfo info)
{
if (!FloatEx.IsFinite(value))
{
if (float.IsNaN(value))
{
return info.NaNSymbol;
}
return FloatEx.IsNegative(value) ? info.NegativeInfinitySymbol : info.PositiveInfinitySymbol;
}
char fmt = ParseFormatSpecifier(format, out int precision);
byte* pDigits = stackalloc byte[SingleNumberBufferLength];
if (fmt == '\0')
{
// For back-compat we currently specially treat the precision for custom
// format specifiers. The constant has more details as to why.
precision = SinglePrecisionCustomFormat;
}
NumberBuffer number = new NumberBuffer(NumberBufferKind.FloatingPoint, pDigits, SingleNumberBufferLength);
number.IsNegative = FloatEx.IsNegative(value);
// We need to track the original precision requested since some formats
// accept values like 0 and others may require additional fixups.
int nMaxDigits = GetFloatingPointMaxDigitsAndPrecision(fmt, ref precision, info, out bool isSignificantDigits);
if ((value != 0.0f) && (!isSignificantDigits || !Grisu3.TryRunSingle(value, precision, ref number)))
{
Dragon4Single(value, precision, isSignificantDigits, ref number);
}
number.CheckConsistency();
// When the number is known to be roundtrippable (either because we requested it be, or
// because we know we have enough digits to satisfy roundtrippability), we should validate
// that the number actually roundtrips back to the original result.
Debug.Assert(((precision != -1) && (precision < SinglePrecision)) || (SingleToInt32Bits(value) == SingleToInt32Bits(NumberToSingle(ref number))));
if (fmt != 0)
{
if (precision == -1)
{
Debug.Assert((fmt == 'G') || (fmt == 'g') || (fmt == 'R') || (fmt == 'r'));
// For the roundtrip and general format specifiers, when returning the shortest roundtrippable
// string, we need to update the maximum number of digits to be the greater of number.DigitsCount
// or SinglePrecision. This ensures that we continue returning "pretty" strings for values with
// less digits. One example this fixes is "-60", which would otherwise be formatted as "-6E+01"
// since DigitsCount would be 1 and the formatter would almost immediately switch to scientific notation.
nMaxDigits = Math.Max(number.DigitsCount, SinglePrecision);
}
NumberToString(ref sb, ref number, fmt, nMaxDigits, info);
}
else
{
Debug.Assert(precision == SinglePrecisionCustomFormat);
NumberToStringFormat(ref sb, ref number, format, info);
}
return null;
}
private static bool TryCopyTo(string source, Span<char> destination, out int charsWritten)
{
Debug.Assert(source != null);
if (source.AsSpan().TryCopyTo(destination))
{
charsWritten = source.Length;
return true;
}
charsWritten = 0;
return false;
}
public static unsafe string FormatInt32(int value, ReadOnlySpan<char> format, IFormatProvider provider)
{
// Fast path for default format with a non-negative value
if (value >= 0 && format.Length == 0)
{
return UInt32ToDecStr((uint)value, digits: -1);
}
char fmt = ParseFormatSpecifier(format, out int digits);
char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison
if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D')
{
return value >= 0 ?
UInt32ToDecStr((uint)value, digits) :
NegativeInt32ToDecStr(value, digits, NumberFormatInfo.GetInstance(provider).NegativeSign);
}
else if (fmtUpper == 'X')
{
// The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase
// hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code produces lowercase.
return Int32ToHexStr(value, (char)(fmt - ('X' - 'A' + 10)), digits);
}
else
{
NumberFormatInfo info = NumberFormatInfo.GetInstance(provider);
byte* pDigits = stackalloc byte[Int32NumberBufferLength];
NumberBuffer number = new NumberBuffer(NumberBufferKind.Integer, pDigits, Int32NumberBufferLength);
Int32ToNumber(value, ref number);
char* stackPtr = stackalloc char[CharStackBufferSize];
ValueStringBuilder sb = new ValueStringBuilder(new Span<char>(stackPtr, CharStackBufferSize));
if (fmt != 0)
{
NumberToString(ref sb, ref number, fmt, digits, info);
}
else
{
NumberToStringFormat(ref sb, ref number, format, info);
}
return sb.ToString();
}
}
public static unsafe bool TryFormatInt32(int value, ReadOnlySpan<char> format, IFormatProvider provider, Span<char> destination, out int charsWritten)
{
// Fast path for default format with a non-negative value
if (value >= 0 && format.Length == 0)
{
return TryUInt32ToDecStr((uint)value, digits: -1, destination, out charsWritten);
}
char fmt = ParseFormatSpecifier(format, out int digits);
char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison
if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D')
{
return value >= 0 ?
TryUInt32ToDecStr((uint)value, digits, destination, out charsWritten) :
TryNegativeInt32ToDecStr(value, digits, NumberFormatInfo.GetInstance(provider).NegativeSign, destination, out charsWritten);
}
else if (fmtUpper == 'X')
{
// The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase
// hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code produces lowercase.
return TryInt32ToHexStr(value, (char)(fmt - ('X' - 'A' + 10)), digits, destination, out charsWritten);
}
else
{
NumberFormatInfo info = NumberFormatInfo.GetInstance(provider);
byte* pDigits = stackalloc byte[Int32NumberBufferLength];
NumberBuffer number = new NumberBuffer(NumberBufferKind.Integer, pDigits, Int32NumberBufferLength);
Int32ToNumber(value, ref number);
char* stackPtr = stackalloc char[CharStackBufferSize];
ValueStringBuilder sb = new ValueStringBuilder(new Span<char>(stackPtr, CharStackBufferSize));
if (fmt != 0)
{
NumberToString(ref sb, ref number, fmt, digits, info);
}
else
{
NumberToStringFormat(ref sb, ref number, format, info);
}
return sb.TryCopyTo(destination, out charsWritten);
}
}
public static unsafe string FormatUInt32(uint value, ReadOnlySpan<char> format, IFormatProvider provider)
{
// Fast path for default format
if (format.Length == 0)
{
return UInt32ToDecStr(value, digits: -1);
}
char fmt = ParseFormatSpecifier(format, out int digits);
char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison
if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D')
{
return UInt32ToDecStr(value, digits);
}
else if (fmtUpper == 'X')
{
// The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase
// hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code produces lowercase.
return Int32ToHexStr((int)value, (char)(fmt - ('X' - 'A' + 10)), digits);
}
else
{
NumberFormatInfo info = NumberFormatInfo.GetInstance(provider);
byte* pDigits = stackalloc byte[UInt32NumberBufferLength];
NumberBuffer number = new NumberBuffer(NumberBufferKind.Integer, pDigits, UInt32NumberBufferLength);
UInt32ToNumber(value, ref number);
char* stackPtr = stackalloc char[CharStackBufferSize];
ValueStringBuilder sb = new ValueStringBuilder(new Span<char>(stackPtr, CharStackBufferSize));
if (fmt != 0)
{
NumberToString(ref sb, ref number, fmt, digits, info);
}
else
{
NumberToStringFormat(ref sb, ref number, format, info);
}
return sb.ToString();
}
}
public static unsafe bool TryFormatUInt32(uint value, ReadOnlySpan<char> format, IFormatProvider provider, Span<char> destination, out int charsWritten)
{
// Fast path for default format
if (format.Length == 0)
{
return TryUInt32ToDecStr(value, digits: -1, destination, out charsWritten);
}
char fmt = ParseFormatSpecifier(format, out int digits);
char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison
if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D')
{
return TryUInt32ToDecStr(value, digits, destination, out charsWritten);
}
else if (fmtUpper == 'X')
{
// The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase
// hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code produces lowercase.
return TryInt32ToHexStr((int)value, (char)(fmt - ('X' - 'A' + 10)), digits, destination, out charsWritten);
}
else
{
NumberFormatInfo info = NumberFormatInfo.GetInstance(provider);
byte* pDigits = stackalloc byte[UInt32NumberBufferLength];
NumberBuffer number = new NumberBuffer(NumberBufferKind.Integer, pDigits, UInt32NumberBufferLength);
UInt32ToNumber(value, ref number);
char* stackPtr = stackalloc char[CharStackBufferSize];
ValueStringBuilder sb = new ValueStringBuilder(new Span<char>(stackPtr, CharStackBufferSize));
if (fmt != 0)
{
NumberToString(ref sb, ref number, fmt, digits, info);
}
else
{
NumberToStringFormat(ref sb, ref number, format, info);
}
return sb.TryCopyTo(destination, out charsWritten);
}
}
public static unsafe string FormatInt64(long value, ReadOnlySpan<char> format, IFormatProvider provider)
{
// Fast path for default format with a non-negative value
if (value >= 0 && format.Length == 0)
{
return UInt64ToDecStr((ulong)value, digits: -1);
}
char fmt = ParseFormatSpecifier(format, out int digits);
char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison
if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D')
{
return value >= 0 ?
UInt64ToDecStr((ulong)value, digits) :
NegativeInt64ToDecStr(value, digits, NumberFormatInfo.GetInstance(provider).NegativeSign);
}
else if (fmtUpper == 'X')
{
// The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase
// hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code
// produces lowercase.
return Int64ToHexStr(value, (char)(fmt - ('X' - 'A' + 10)), digits);
}
else
{
NumberFormatInfo info = NumberFormatInfo.GetInstance(provider);
byte* pDigits = stackalloc byte[Int64NumberBufferLength];
NumberBuffer number = new NumberBuffer(NumberBufferKind.Integer, pDigits, Int64NumberBufferLength);
Int64ToNumber(value, ref number);
char* stackPtr = stackalloc char[CharStackBufferSize];
ValueStringBuilder sb = new ValueStringBuilder(new Span<char>(stackPtr, CharStackBufferSize));
if (fmt != 0)
{
NumberToString(ref sb, ref number, fmt, digits, info);
}
else
{
NumberToStringFormat(ref sb, ref number, format, info);
}
return sb.ToString();
}
}
public static unsafe bool TryFormatInt64(long value, ReadOnlySpan<char> format, IFormatProvider provider, Span<char> destination, out int charsWritten)
{
// Fast path for default format with a non-negative value
if (value >= 0 && format.Length == 0)
{
return TryUInt64ToDecStr((ulong)value, digits: -1, destination, out charsWritten);
}
char fmt = ParseFormatSpecifier(format, out int digits);
char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison
if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D')
{
return value >= 0 ?
TryUInt64ToDecStr((ulong)value, digits, destination, out charsWritten) :
TryNegativeInt64ToDecStr(value, digits, NumberFormatInfo.GetInstance(provider).NegativeSign, destination, out charsWritten);
}
else if (fmtUpper == 'X')
{
// The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase
// hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code
// produces lowercase.
return TryInt64ToHexStr(value, (char)(fmt - ('X' - 'A' + 10)), digits, destination, out charsWritten);
}
else
{
NumberFormatInfo info = NumberFormatInfo.GetInstance(provider);
byte* pDigits = stackalloc byte[Int64NumberBufferLength];
NumberBuffer number = new NumberBuffer(NumberBufferKind.Integer, pDigits, Int64NumberBufferLength);
Int64ToNumber(value, ref number);
char* stackPtr = stackalloc char[CharStackBufferSize];
ValueStringBuilder sb = new ValueStringBuilder(new Span<char>(stackPtr, CharStackBufferSize));
if (fmt != 0)
{
NumberToString(ref sb, ref number, fmt, digits, info);
}
else
{
NumberToStringFormat(ref sb, ref number, format, info);
}
return sb.TryCopyTo(destination, out charsWritten);
}
}
public static unsafe string FormatUInt64(ulong value, ReadOnlySpan<char> format, IFormatProvider provider)
{
// Fast path for default format
if (format.Length == 0)
{
return UInt64ToDecStr(value, digits: -1);
}
char fmt = ParseFormatSpecifier(format, out int digits);
char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison
if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D')
{
return UInt64ToDecStr(value, digits);
}
else if (fmtUpper == 'X')
{
// The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase
// hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code
// produces lowercase.
return Int64ToHexStr((long)value, (char)(fmt - ('X' - 'A' + 10)), digits);
}
else
{
NumberFormatInfo info = NumberFormatInfo.GetInstance(provider);
byte* pDigits = stackalloc byte[UInt64NumberBufferLength];
NumberBuffer number = new NumberBuffer(NumberBufferKind.Integer, pDigits, UInt64NumberBufferLength);
UInt64ToNumber(value, ref number);
char* stackPtr = stackalloc char[CharStackBufferSize];
ValueStringBuilder sb = new ValueStringBuilder(new Span<char>(stackPtr, CharStackBufferSize));
if (fmt != 0)
{
NumberToString(ref sb, ref number, fmt, digits, info);
}
else
{
NumberToStringFormat(ref sb, ref number, format, info);
}
return sb.ToString();
}
}
public static unsafe bool TryFormatUInt64(ulong value, ReadOnlySpan<char> format, IFormatProvider provider, Span<char> destination, out int charsWritten)
{
// Fast path for default format
if (format.Length == 0)
{
return TryUInt64ToDecStr(value, digits: -1, destination, out charsWritten);
}
char fmt = ParseFormatSpecifier(format, out int digits);
char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison
if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D')
{
return TryUInt64ToDecStr(value, digits, destination, out charsWritten);
}
else if (fmtUpper == 'X')
{
// The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase
// hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code
// produces lowercase.
return TryInt64ToHexStr((long)value, (char)(fmt - ('X' - 'A' + 10)), digits, destination, out charsWritten);
}
else
{
NumberFormatInfo info = NumberFormatInfo.GetInstance(provider);
byte* pDigits = stackalloc byte[UInt64NumberBufferLength];
NumberBuffer number = new NumberBuffer(NumberBufferKind.Integer, pDigits, UInt64NumberBufferLength);
UInt64ToNumber(value, ref number);
char* stackPtr = stackalloc char[CharStackBufferSize];
ValueStringBuilder sb = new ValueStringBuilder(new Span<char>(stackPtr, CharStackBufferSize));
if (fmt != 0)
{
NumberToString(ref sb, ref number, fmt, digits, info);
}
else
{
NumberToStringFormat(ref sb, ref number, format, info);
}
return sb.TryCopyTo(destination, out charsWritten);
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)] // called from only one location
private static unsafe void Int32ToNumber(int value, ref NumberBuffer number)
{
number.DigitsCount = Int32Precision;
if (value >= 0)
{
number.IsNegative = false;
}
else
{
number.IsNegative = true;
value = -value;
}
byte* buffer = number.GetDigitsPointer();
byte* p = UInt32ToDecChars(buffer + Int32Precision, (uint)value, 0);
int i = (int)(buffer + Int32Precision - p);
number.DigitsCount = i;
number.Scale = i;
byte* dst = number.GetDigitsPointer();
while (--i >= 0)
*dst++ = *p++;
*dst = (byte)('\0');
number.CheckConsistency();
}
private static unsafe string NegativeInt32ToDecStr(int value, int digits, string sNegative)
{
Debug.Assert(value < 0);
if (digits < 1)
digits = 1;
int bufferLength = Math.Max(digits, FormattingHelpers.CountDigits((uint)(-value))) + sNegative.Length;
string result = FastAllocateString(bufferLength);
fixed (char* buffer = result)
{
char* p = UInt32ToDecChars(buffer + bufferLength, (uint)(-value), digits);
Debug.Assert(p == buffer + sNegative.Length);
for (int i = sNegative.Length - 1; i >= 0; i--)
{
*(--p) = sNegative[i];
}
Debug.Assert(p == buffer);
}
return result;
}
private static unsafe bool TryNegativeInt32ToDecStr(int value, int digits, string sNegative, Span<char> destination, out int charsWritten)
{
Debug.Assert(value < 0);
if (digits < 1)
digits = 1;
int bufferLength = Math.Max(digits, FormattingHelpers.CountDigits((uint)(-value))) + sNegative.Length;
if (bufferLength > destination.Length)
{
charsWritten = 0;
return false;
}
charsWritten = bufferLength;
fixed (char* buffer = &MemoryMarshal.GetReference(destination))
{
char* p = UInt32ToDecChars(buffer + bufferLength, (uint)(-value), digits);
Debug.Assert(p == buffer + sNegative.Length);
for (int i = sNegative.Length - 1; i >= 0; i--)
{
*(--p) = sNegative[i];
}
Debug.Assert(p == buffer);
}
return true;
}
private static unsafe string Int32ToHexStr(int value, char hexBase, int digits)
{
if (digits < 1)
digits = 1;
int bufferLength = Math.Max(digits, FormattingHelpers.CountHexDigits((uint)value));
string result = FastAllocateString(bufferLength);
fixed (char* buffer = result)
{
char* p = Int32ToHexChars(buffer + bufferLength, (uint)value, hexBase, digits);
Debug.Assert(p == buffer);
}
return result;
}
private static unsafe bool TryInt32ToHexStr(int value, char hexBase, int digits, Span<char> destination, out int charsWritten)
{
if (digits < 1)
digits = 1;
int bufferLength = Math.Max(digits, FormattingHelpers.CountHexDigits((uint)value));
if (bufferLength > destination.Length)
{
charsWritten = 0;
return false;
}
charsWritten = bufferLength;
fixed (char* buffer = &MemoryMarshal.GetReference(destination))
{
char* p = Int32ToHexChars(buffer + bufferLength, (uint)value, hexBase, digits);
Debug.Assert(p == buffer);
}
return true;
}
private static unsafe char* Int32ToHexChars(char* buffer, uint value, int hexBase, int digits)
{
while (--digits >= 0 || value != 0)
{
byte digit = (byte)(value & 0xF);
*(--buffer) = (char)(digit + (digit < 10 ? (byte)'0' : hexBase));
value >>= 4;
}
return buffer;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)] // called from only one location
private static unsafe void UInt32ToNumber(uint value, ref NumberBuffer number)
{
number.DigitsCount = UInt32Precision;
number.IsNegative = false;
byte* buffer = number.GetDigitsPointer();
byte* p = UInt32ToDecChars(buffer + UInt32Precision, value, 0);
int i = (int)(buffer + UInt32Precision - p);
number.DigitsCount = i;
number.Scale = i;
byte* dst = number.GetDigitsPointer();
while (--i >= 0)
*dst++ = *p++;
*dst = (byte)('\0');
number.CheckConsistency();
}
internal static unsafe byte* UInt32ToDecChars(byte* bufferEnd, uint value, int digits)
{
while (--digits >= 0 || value != 0)
{
value = MathEx.DivRem(value, 10, out uint remainder);
*(--bufferEnd) = (byte)(remainder + '0');
}
return bufferEnd;
}
internal static unsafe char* UInt32ToDecChars(char* bufferEnd, uint value, int digits)
{
while (--digits >= 0 || value != 0)
{
value = MathEx.DivRem(value, 10, out uint remainder);
*(--bufferEnd) = (char)(remainder + '0');
}
return bufferEnd;
}
internal static unsafe string UInt32ToDecStr(uint value, int digits)
{
int bufferLength = Math.Max(digits, FormattingHelpers.CountDigits(value));
// For single-digit values that are very common, especially 0 and 1, just return cached strings.
if (bufferLength == 1)
{
return s_singleDigitStringCache[value];
}
string result = FastAllocateString(bufferLength);
fixed (char* buffer = result)
{
char* p = buffer + bufferLength;
if (digits <= 1)
{
do
{
value = MathEx.DivRem(value, 10, out uint remainder);
*(--p) = (char)(remainder + '0');
}
while (value != 0);
}
else
{
p = UInt32ToDecChars(p, value, digits);
}
Debug.Assert(p == buffer);
}
return result;
}
private static unsafe bool TryUInt32ToDecStr(uint value, int digits, Span<char> destination, out int charsWritten)
{
int bufferLength = Math.Max(digits, FormattingHelpers.CountDigits(value));
if (bufferLength > destination.Length)
{
charsWritten = 0;
return false;
}
charsWritten = bufferLength;
fixed (char* buffer = &MemoryMarshal.GetReference(destination))
{
char* p = buffer + bufferLength;
if (digits <= 1)
{
do
{
value = MathEx.DivRem(value, 10, out uint remainder);
*(--p) = (char)(remainder + '0');
}
while (value != 0);
}
else
{
p = UInt32ToDecChars(p, value, digits);
}
Debug.Assert(p == buffer);
}
return true;
}
private static unsafe void Int64ToNumber(long input, ref NumberBuffer number)
{
ulong value = (ulong)input;
number.IsNegative = input < 0;
number.DigitsCount = Int64Precision;
if (number.IsNegative)
{
value = (ulong)(-input);
}
byte* buffer = number.GetDigitsPointer();
byte* p = buffer + Int64Precision;
while (High32(value) != 0)
p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9);
p = UInt32ToDecChars(p, Low32(value), 0);
int i = (int)(buffer + Int64Precision - p);
number.DigitsCount = i;
number.Scale = i;
byte* dst = number.GetDigitsPointer();
while (--i >= 0)
*dst++ = *p++;
*dst = (byte)('\0');
number.CheckConsistency();
}
private static unsafe string NegativeInt64ToDecStr(long input, int digits, string sNegative)
{
Debug.Assert(input < 0);
if (digits < 1)
{
digits = 1;
}
ulong value = (ulong)(-input);
int bufferLength = Math.Max(digits, FormattingHelpers.CountDigits(value)) + sNegative.Length;
string result = FastAllocateString(bufferLength);
fixed (char* buffer = result)
{
char* p = buffer + bufferLength;
while (High32(value) != 0)
{
p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9);
digits -= 9;
}
p = UInt32ToDecChars(p, Low32(value), digits);
Debug.Assert(p == buffer + sNegative.Length);
for (int i = sNegative.Length - 1; i >= 0; i--)
{
*(--p) = sNegative[i];
}
Debug.Assert(p == buffer);
}
return result;
}
private static unsafe bool TryNegativeInt64ToDecStr(long input, int digits, string sNegative, Span<char> destination, out int charsWritten)
{
Debug.Assert(input < 0);
if (digits < 1)
{
digits = 1;
}
ulong value = (ulong)(-input);
int bufferLength = Math.Max(digits, FormattingHelpers.CountDigits((ulong)(-input))) + sNegative.Length;
if (bufferLength > destination.Length)
{
charsWritten = 0;
return false;
}
charsWritten = bufferLength;
fixed (char* buffer = &MemoryMarshal.GetReference(destination))
{
char* p = buffer + bufferLength;
while (High32(value) != 0)
{
p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9);
digits -= 9;
}
p = UInt32ToDecChars(p, Low32(value), digits);
Debug.Assert(p == buffer + sNegative.Length);
for (int i = sNegative.Length - 1; i >= 0; i--)
{
*(--p) = sNegative[i];
}
Debug.Assert(p == buffer);
}
return true;
}
private static unsafe string Int64ToHexStr(long value, char hexBase, int digits)
{
int bufferLength = Math.Max(digits, FormattingHelpers.CountHexDigits((ulong)value));
string result = FastAllocateString(bufferLength);
fixed (char* buffer = result)
{
char* p = buffer + bufferLength;
if (High32((ulong)value) != 0)
{
p = Int32ToHexChars(p, Low32((ulong)value), hexBase, 8);
p = Int32ToHexChars(p, High32((ulong)value), hexBase, digits - 8);
}
else
{
p = Int32ToHexChars(p, Low32((ulong)value), hexBase, Math.Max(digits, 1));
}
Debug.Assert(p == buffer);
}
return result;
}
private static unsafe bool TryInt64ToHexStr(long value, char hexBase, int digits, Span<char> destination, out int charsWritten)
{
int bufferLength = Math.Max(digits, FormattingHelpers.CountHexDigits((ulong)value));
if (bufferLength > destination.Length)
{
charsWritten = 0;
return false;
}
charsWritten = bufferLength;
fixed (char* buffer = &MemoryMarshal.GetReference(destination))
{
char* p = buffer + bufferLength;
if (High32((ulong)value) != 0)
{
p = Int32ToHexChars(p, Low32((ulong)value), hexBase, 8);
p = Int32ToHexChars(p, High32((ulong)value), hexBase, digits - 8);
}
else
{
p = Int32ToHexChars(p, Low32((ulong)value), hexBase, Math.Max(digits, 1));
}
Debug.Assert(p == buffer);
}
return true;
}
private static unsafe void UInt64ToNumber(ulong value, ref NumberBuffer number)
{
number.DigitsCount = UInt64Precision;
number.IsNegative = false;
byte* buffer = number.GetDigitsPointer();
byte* p = buffer + UInt64Precision;
while (High32(value) != 0)
p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9);
p = UInt32ToDecChars(p, Low32(value), 0);
int i = (int)(buffer + UInt64Precision - p);
number.DigitsCount = i;
number.Scale = i;
byte* dst = number.GetDigitsPointer();
while (--i >= 0)
*dst++ = *p++;
*dst = (byte)('\0');
number.CheckConsistency();
}
internal static unsafe string UInt64ToDecStr(ulong value, int digits)
{
if (digits < 1)
digits = 1;
int bufferLength = Math.Max(digits, FormattingHelpers.CountDigits(value));
// For single-digit values that are very common, especially 0 and 1, just return cached strings.
if (bufferLength == 1)
{
return s_singleDigitStringCache[value];
}
string result = FastAllocateString(bufferLength);
fixed (char* buffer = result)
{
char* p = buffer + bufferLength;
while (High32(value) != 0)
{
p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9);
digits -= 9;
}
p = UInt32ToDecChars(p, Low32(value), digits);
Debug.Assert(p == buffer);
}
return result;
}
private static unsafe bool TryUInt64ToDecStr(ulong value, int digits, Span<char> destination, out int charsWritten)
{
if (digits < 1)
digits = 1;
int bufferLength = Math.Max(digits, FormattingHelpers.CountDigits(value));
if (bufferLength > destination.Length)
{
charsWritten = 0;
return false;
}
charsWritten = bufferLength;
fixed (char* buffer = &MemoryMarshal.GetReference(destination))
{
char* p = buffer + bufferLength;
while (High32(value) != 0)
{
p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9);
digits -= 9;
}
p = UInt32ToDecChars(p, Low32(value), digits);
Debug.Assert(p == buffer);
}
return true;
}
internal static unsafe char ParseFormatSpecifier(ReadOnlySpan<char> format, out int digits)
{
char c = default;
if (format.Length > 0)
{
// If the format begins with a symbol, see if it's a standard format
// with or without a specified number of digits.
c = format[0];
if ((uint)(c - 'A') <= 'Z' - 'A' ||
(uint)(c - 'a') <= 'z' - 'a')
{
// Fast path for sole symbol, e.g. "D"
if (format.Length == 1)
{
digits = -1;
return c;
}
if (format.Length == 2)
{
// Fast path for symbol and single digit, e.g. "X4"
int d = format[1] - '0';
if ((uint)d < 10)
{
digits = d;
return c;
}
}
else if (format.Length == 3)
{
// Fast path for symbol and double digit, e.g. "F12"
int d1 = format[1] - '0', d2 = format[2] - '0';
if ((uint)d1 < 10 && (uint)d2 < 10)
{
digits = d1 * 10 + d2;
return c;
}
}
// Fallback for symbol and any length digits. The digits value must be >= 0 && <= 99,
// but it can begin with any number of 0s, and thus we may need to check more than two
// digits. Further, for compat, we need to stop when we hit a null char.
int n = 0;
int i = 1;
while (i < format.Length && (((uint)format[i] - '0') < 10) && n < 10)
{
n = (n * 10) + format[i++] - '0';
}
// If we're at the end of the digits rather than having stopped because we hit something
// other than a digit or overflowed, return the standard format info.
if (i == format.Length || format[i] == '\0')
{
digits = n;
return c;
}
}
}
// Default empty format to be "G"; custom format is signified with '\0'.
digits = -1;
return format.Length == 0 || c == '\0' ? // For compat, treat '\0' as the end of the specifier, even if the specifier extends beyond it.
'G' :
'\0';
}
internal static unsafe void NumberToString(ref ValueStringBuilder sb, ref NumberBuffer number, char format, int nMaxDigits, NumberFormatInfo info)
{
number.CheckConsistency();
bool isCorrectlyRounded = (number.Kind == NumberBufferKind.FloatingPoint);
switch (format)
{
case 'C':
case 'c':
{
if (nMaxDigits < 0)
nMaxDigits = info.CurrencyDecimalDigits;
RoundNumber(ref number, number.Scale + nMaxDigits, isCorrectlyRounded); // Don't change this line to use digPos since digCount could have its sign changed.
FormatCurrency(ref sb, ref number, nMaxDigits, info);
break;
}
case 'F':
case 'f':
{
if (nMaxDigits < 0)
nMaxDigits = info.NumberDecimalDigits;
RoundNumber(ref number, number.Scale + nMaxDigits, isCorrectlyRounded);
if (number.IsNegative)
sb.Append(info.NegativeSign);
FormatFixed(ref sb, ref number, nMaxDigits, null, info.NumberDecimalSeparator, null);
break;
}
case 'N':
case 'n':
{
if (nMaxDigits < 0)
nMaxDigits = info.NumberDecimalDigits; // Since we are using digits in our calculation
RoundNumber(ref number, number.Scale + nMaxDigits, isCorrectlyRounded);
FormatNumber(ref sb, ref number, nMaxDigits, info);
break;
}
case 'E':
case 'e':
{
if (nMaxDigits < 0)
nMaxDigits = DefaultPrecisionExponentialFormat;
nMaxDigits++;
RoundNumber(ref number, nMaxDigits, isCorrectlyRounded);
if (number.IsNegative)
sb.Append(info.NegativeSign);
FormatScientific(ref sb, ref number, nMaxDigits, info, format);
break;
}
case 'G':
case 'g':
{
bool noRounding = false;
if (nMaxDigits < 1)
{
if ((number.Kind == NumberBufferKind.Decimal) && (nMaxDigits == -1))
{
noRounding = true; // Turn off rounding for ECMA compliance to output trailing 0's after decimal as significant
if (number.Digits[0] == 0)
{
// -0 should be formatted as 0 for decimal. This is normally handled by RoundNumber (which we are skipping)
goto SkipSign;
}
goto SkipRounding;
}
else
{
// This ensures that the PAL code pads out to the correct place even when we use the default precision
nMaxDigits = number.DigitsCount;
}
}
RoundNumber(ref number, nMaxDigits, isCorrectlyRounded);
SkipRounding:
if (number.IsNegative)
sb.Append(info.NegativeSign);
SkipSign:
FormatGeneral(ref sb, ref number, nMaxDigits, info, (char)(format - ('G' - 'E')), noRounding);
break;
}
case 'P':
case 'p':
{
if (nMaxDigits < 0)
nMaxDigits = info.PercentDecimalDigits;
number.Scale += 2;
RoundNumber(ref number, number.Scale + nMaxDigits, isCorrectlyRounded);
FormatPercent(ref sb, ref number, nMaxDigits, info);
break;
}
case 'R':
case 'r':
{
if (number.Kind != NumberBufferKind.FloatingPoint)
{
goto default;
}
format = (char)(format - ('R' - 'G'));
Debug.Assert((format == 'G') || (format == 'g'));
goto case 'G';
}
default:
throw new FormatException("SR.Argument_BadFormatSpecifier");
}
}
internal static unsafe void NumberToStringFormat(ref ValueStringBuilder sb, ref NumberBuffer number, ReadOnlySpan<char> format, NumberFormatInfo info)
{
number.CheckConsistency();
int digitCount;
int decimalPos;
int firstDigit;
int lastDigit;
int digPos;
bool scientific;
int thousandPos;
int thousandCount = 0;
bool thousandSeps;
int scaleAdjust;
int adjust;
int section;
int src;
byte* dig = number.GetDigitsPointer();
char ch;
section = FindSection(format, dig[0] == 0 ? 2 : number.IsNegative ? 1 : 0);
while (true)
{
digitCount = 0;
decimalPos = -1;
firstDigit = 0x7FFFFFFF;
lastDigit = 0;
scientific = false;
thousandPos = -1;
thousandSeps = false;
scaleAdjust = 0;
src = section;
fixed (char* pFormat = &MemoryMarshal.GetReference(format))
{
while (src < format.Length && (ch = pFormat[src++]) != 0 && ch != ';')
{
switch (ch)
{
case '#':
digitCount++;
break;
case '0':
if (firstDigit == 0x7FFFFFFF)
firstDigit = digitCount;
digitCount++;
lastDigit = digitCount;
break;
case '.':
if (decimalPos < 0)
decimalPos = digitCount;
break;
case ',':
if (digitCount > 0 && decimalPos < 0)
{
if (thousandPos >= 0)
{
if (thousandPos == digitCount)
{
thousandCount++;
break;
}
thousandSeps = true;
}
thousandPos = digitCount;
thousandCount = 1;
}
break;
case '%':
scaleAdjust += 2;
break;
case '\x2030':
scaleAdjust += 3;
break;
case '\'':
case '"':
while (src < format.Length && pFormat[src] != 0 && pFormat[src++] != ch)
;
break;
case '\\':
if (src < format.Length && pFormat[src] != 0)
src++;
break;
case 'E':
case 'e':
if ((src < format.Length && pFormat[src] == '0') ||
(src + 1 < format.Length && (pFormat[src] == '+' || pFormat[src] == '-') && pFormat[src + 1] == '0'))
{
while (++src < format.Length && pFormat[src] == '0')
;
scientific = true;
}
break;
}
}
}
if (decimalPos < 0)
decimalPos = digitCount;
if (thousandPos >= 0)
{
if (thousandPos == decimalPos)
scaleAdjust -= thousandCount * 3;
else
thousandSeps = true;
}
if (dig[0] != 0)
{
number.Scale += scaleAdjust;
int pos = scientific ? digitCount : number.Scale + digitCount - decimalPos;
RoundNumber(ref number, pos, isCorrectlyRounded: false);
if (dig[0] == 0)
{
src = FindSection(format, 2);
if (src != section)
{
section = src;
continue;
}
}
}
else
{
if (number.Kind != NumberBufferKind.FloatingPoint)
{
// The integer types don't have a concept of -0 and decimal always format -0 as 0
number.IsNegative = false;
}
number.Scale = 0; // Decimals with scale ('0.00') should be rounded.
}
break;
}
firstDigit = firstDigit < decimalPos ? decimalPos - firstDigit : 0;
lastDigit = lastDigit > decimalPos ? decimalPos - lastDigit : 0;
if (scientific)
{
digPos = decimalPos;
adjust = 0;
}
else
{
digPos = number.Scale > decimalPos ? number.Scale : decimalPos;
adjust = number.Scale - decimalPos;
}
src = section;
// Adjust can be negative, so we make this an int instead of an unsigned int.
// Adjust represents the number of characters over the formatting e.g. format string is "0000" and you are trying to
// format 100000 (6 digits). Means adjust will be 2. On the other hand if you are trying to format 10 adjust will be
// -2 and we'll need to fixup these digits with 0 padding if we have 0 formatting as in this example.
Span<int> thousandsSepPos = stackalloc int[4];
int thousandsSepCtr = -1;
if (thousandSeps)
{
// We need to precompute this outside the number formatting loop
if (info.NumberGroupSeparator.Length > 0)
{
// We need this array to figure out where to insert the thousands separator. We would have to traverse the string
// backwards. PIC formatting always traverses forwards. These indices are precomputed to tell us where to insert
// the thousands separator so we can get away with traversing forwards. Note we only have to compute up to digPos.
// The max is not bound since you can have formatting strings of the form "000,000..", and this
// should handle that case too.
int[] groupDigits = info.NumberGroupSizes;
int groupSizeIndex = 0; // Index into the groupDigits array.
int groupTotalSizeCount = 0;
int groupSizeLen = groupDigits.Length; // The length of groupDigits array.
if (groupSizeLen != 0)
groupTotalSizeCount = groupDigits[groupSizeIndex]; // The current running total of group size.
int groupSize = groupTotalSizeCount;
int totalDigits = digPos + ((adjust < 0) ? adjust : 0); // Actual number of digits in o/p
int numDigits = (firstDigit > totalDigits) ? firstDigit : totalDigits;
while (numDigits > groupTotalSizeCount)
{
if (groupSize == 0)
break;
++thousandsSepCtr;
if (thousandsSepCtr >= thousandsSepPos.Length)
{
var newThousandsSepPos = new int[thousandsSepPos.Length * 2];
thousandsSepPos.CopyTo(newThousandsSepPos);
thousandsSepPos = newThousandsSepPos;
}
thousandsSepPos[thousandsSepCtr] = groupTotalSizeCount;
if (groupSizeIndex < groupSizeLen - 1)
{
groupSizeIndex++;
groupSize = groupDigits[groupSizeIndex];
}
groupTotalSizeCount += groupSize;
}
}
}
if (number.IsNegative && (section == 0) && (number.Scale != 0))
sb.Append(info.NegativeSign);
bool decimalWritten = false;
fixed (char* pFormat = &MemoryMarshal.GetReference(format))
{
byte* cur = dig;
while (src < format.Length && (ch = pFormat[src++]) != 0 && ch != ';')
{
if (adjust > 0)
{
switch (ch)
{
case '#':
case '0':
case '.':
while (adjust > 0)
{
// digPos will be one greater than thousandsSepPos[thousandsSepCtr] since we are at
// the character after which the groupSeparator needs to be appended.
sb.Append(*cur != 0 ? (char)(*cur++) : '0');
if (thousandSeps && digPos > 1 && thousandsSepCtr >= 0)
{
if (digPos == thousandsSepPos[thousandsSepCtr] + 1)
{
sb.Append(info.NumberGroupSeparator);
thousandsSepCtr--;
}
}
digPos--;
adjust--;
}
break;
}
}
switch (ch)
{
case '#':
case '0':
{
if (adjust < 0)
{
adjust++;
ch = digPos <= firstDigit ? '0' : '\0';
}
else
{
ch = *cur != 0 ? (char)(*cur++) : digPos > lastDigit ? '0' : '\0';
}
if (ch != 0)
{
sb.Append(ch);
if (thousandSeps && digPos > 1 && thousandsSepCtr >= 0)
{
if (digPos == thousandsSepPos[thousandsSepCtr] + 1)
{
sb.Append(info.NumberGroupSeparator);
thousandsSepCtr--;
}
}
}
digPos--;
break;
}
case '.':
{
if (digPos != 0 || decimalWritten)
{
// For compatibility, don't echo repeated decimals
break;
}
// If the format has trailing zeros or the format has a decimal and digits remain
if (lastDigit < 0 || (decimalPos < digitCount && *cur != 0))
{
sb.Append(info.NumberDecimalSeparator);
decimalWritten = true;
}
break;
}
case '\x2030':
sb.Append(info.PerMilleSymbol);
break;
case '%':
sb.Append(info.PercentSymbol);
break;
case ',':
break;
case '\'':
case '"':
while (src < format.Length && pFormat[src] != 0 && pFormat[src] != ch)
sb.Append(pFormat[src++]);
if (src < format.Length && pFormat[src] != 0)
src++;
break;
case '\\':
if (src < format.Length && pFormat[src] != 0)
sb.Append(pFormat[src++]);
break;
case 'E':
case 'e':
{
bool positiveSign = false;
int i = 0;
if (scientific)
{
if (src < format.Length && pFormat[src] == '0')
{
// Handles E0, which should format the same as E-0
i++;
}
else if (src + 1 < format.Length && pFormat[src] == '+' && pFormat[src + 1] == '0')
{
// Handles E+0
positiveSign = true;
}
else if (src + 1 < format.Length && pFormat[src] == '-' && pFormat[src + 1] == '0')
{
// Handles E-0
// Do nothing, this is just a place holder s.t. we don't break out of the loop.
}
else
{
sb.Append(ch);
break;
}
while (++src < format.Length && pFormat[src] == '0')
i++;
if (i > 10)
i = 10;
int exp = dig[0] == 0 ? 0 : number.Scale - decimalPos;
FormatExponent(ref sb, info, exp, ch, i, positiveSign);
scientific = false;
}
else
{
sb.Append(ch); // Copy E or e to output
if (src < format.Length)
{
if (pFormat[src] == '+' || pFormat[src] == '-')
sb.Append(pFormat[src++]);
while (src < format.Length && pFormat[src] == '0')
sb.Append(pFormat[src++]);
}
}
break;
}
default:
sb.Append(ch);
break;
}
}
}
if (number.IsNegative && (section == 0) && (number.Scale == 0) && (sb.Length > 0))
sb.Insert(0, info.NegativeSign);
}
private static void FormatCurrency(ref ValueStringBuilder sb, ref NumberBuffer number, int nMaxDigits, NumberFormatInfo info)
{
string fmt = number.IsNegative ?
s_negCurrencyFormats[info.CurrencyNegativePattern] :
s_posCurrencyFormats[info.CurrencyPositivePattern];
foreach (char ch in fmt)
{
switch (ch)
{
case '#':
FormatFixed(ref sb, ref number, nMaxDigits, info.CurrencyGroupSizes, info.CurrencyDecimalSeparator, info.CurrencyGroupSeparator);
break;
case '-':
sb.Append(info.NegativeSign);
break;
case '$':
sb.Append(info.CurrencySymbol);
break;
default:
sb.Append(ch);
break;
}
}
}
private static unsafe void FormatFixed(ref ValueStringBuilder sb, ref NumberBuffer number, int nMaxDigits, int[] groupDigits, string sDecimal, string sGroup)
{
int digPos = number.Scale;
byte* dig = number.GetDigitsPointer();
if (digPos > 0)
{
if (groupDigits != null)
{
Debug.Assert(sGroup != null, "Must be nulll when groupDigits != null");
int groupSizeIndex = 0; // Index into the groupDigits array.
int bufferSize = digPos; // The length of the result buffer string.
int groupSize = 0; // The current group size.
// Find out the size of the string buffer for the result.
if (groupDigits.Length != 0) // You can pass in 0 length arrays
{
int groupSizeCount = groupDigits[groupSizeIndex]; // The current total of group size.
while (digPos > groupSizeCount)
{
groupSize = groupDigits[groupSizeIndex];
if (groupSize == 0)
break;
bufferSize += sGroup.Length;
if (groupSizeIndex < groupDigits.Length - 1)
groupSizeIndex++;
groupSizeCount += groupDigits[groupSizeIndex];
if (groupSizeCount < 0 || bufferSize < 0)
throw new ArgumentOutOfRangeException(); // If we overflow
}
groupSize = groupSizeCount == 0 ? 0 : groupDigits[0]; // If you passed in an array with one entry as 0, groupSizeCount == 0
}
groupSizeIndex = 0;
int digitCount = 0;
int digLength = number.DigitsCount;
int digStart = (digPos < digLength) ? digPos : digLength;
fixed (char* spanPtr = &MemoryMarshal.GetReference(sb.AppendSpan(bufferSize)))
{
char* p = spanPtr + bufferSize - 1;
for (int i = digPos - 1; i >= 0; i--)
{
*(p--) = (i < digStart) ? (char)(dig[i]) : '0';
if (groupSize > 0)
{
digitCount++;
if ((digitCount == groupSize) && (i != 0))
{
for (int j = sGroup.Length - 1; j >= 0; j--)
*(p--) = sGroup[j];
if (groupSizeIndex < groupDigits.Length - 1)
{
groupSizeIndex++;
groupSize = groupDigits[groupSizeIndex];
}
digitCount = 0;
}
}
}
Debug.Assert(p >= spanPtr - 1, "Underflow");
dig += digStart;
}
}
else
{
do
{
sb.Append(*dig != 0 ? (char)(*dig++) : '0');
}
while (--digPos > 0);
}
}
else
{
sb.Append('0');
}
if (nMaxDigits > 0)
{
Debug.Assert(sDecimal != null);
sb.Append(sDecimal);
if ((digPos < 0) && (nMaxDigits > 0))
{
int zeroes = Math.Min(-digPos, nMaxDigits);
sb.Append('0', zeroes);
digPos += zeroes;
nMaxDigits -= zeroes;
}
while (nMaxDigits > 0)
{
sb.Append((*dig != 0) ? (char)(*dig++) : '0');
nMaxDigits--;
}
}
}
private static void FormatNumber(ref ValueStringBuilder sb, ref NumberBuffer number, int nMaxDigits, NumberFormatInfo info)
{
string fmt = number.IsNegative ?
s_negNumberFormats[info.NumberNegativePattern] :
PosNumberFormat;
foreach (char ch in fmt)
{
switch (ch)
{
case '#':
FormatFixed(ref sb, ref number, nMaxDigits, info.NumberGroupSizes, info.NumberDecimalSeparator, info.NumberGroupSeparator);
break;
case '-':
sb.Append(info.NegativeSign);
break;
default:
sb.Append(ch);
break;
}
}
}
private static unsafe void FormatScientific(ref ValueStringBuilder sb, ref NumberBuffer number, int nMaxDigits, NumberFormatInfo info, char expChar)
{
byte* dig = number.GetDigitsPointer();
sb.Append((*dig != 0) ? (char)(*dig++) : '0');
if (nMaxDigits != 1) // For E0 we would like to suppress the decimal point
sb.Append(info.NumberDecimalSeparator);
while (--nMaxDigits > 0)
sb.Append((*dig != 0) ? (char)(*dig++) : '0');
int e = number.Digits[0] == 0 ? 0 : number.Scale - 1;
FormatExponent(ref sb, info, e, expChar, 3, true);
}
private static unsafe void FormatExponent(ref ValueStringBuilder sb, NumberFormatInfo info, int value, char expChar, int minDigits, bool positiveSign)
{
sb.Append(expChar);
if (value < 0)
{
sb.Append(info.NegativeSign);
value = -value;
}
else
{
if (positiveSign)
sb.Append(info.PositiveSign);
}
char* digits = stackalloc char[MaxUInt32DecDigits];
char* p = UInt32ToDecChars(digits + MaxUInt32DecDigits, (uint)value, minDigits);
sb.Append(p, (int)(digits + MaxUInt32DecDigits - p));
}
private static unsafe void FormatGeneral(ref ValueStringBuilder sb, ref NumberBuffer number, int nMaxDigits, NumberFormatInfo info, char expChar, bool bSuppressScientific)
{
int digPos = number.Scale;
bool scientific = false;
if (!bSuppressScientific)
{
// Don't switch to scientific notation
if (digPos > nMaxDigits || digPos < -3)
{
digPos = 1;
scientific = true;
}
}
byte* dig = number.GetDigitsPointer();
if (digPos > 0)
{
do
{
sb.Append((*dig != 0) ? (char)(*dig++) : '0');
} while (--digPos > 0);
}
else
{
sb.Append('0');
}
if (*dig != 0 || digPos < 0)
{
sb.Append(info.NumberDecimalSeparator);
while (digPos < 0)
{
sb.Append('0');
digPos++;
}
while (*dig != 0)
sb.Append((char)(*dig++));
}
if (scientific)
FormatExponent(ref sb, info, number.Scale - 1, expChar, 2, true);
}
private static void FormatPercent(ref ValueStringBuilder sb, ref NumberBuffer number, int nMaxDigits, NumberFormatInfo info)
{
string fmt = number.IsNegative ?
s_negPercentFormats[info.PercentNegativePattern] :
s_posPercentFormats[info.PercentPositivePattern];
foreach (char ch in fmt)
{
switch (ch)
{
case '#':
FormatFixed(ref sb, ref number, nMaxDigits, info.PercentGroupSizes, info.PercentDecimalSeparator, info.PercentGroupSeparator);
break;
case '-':
sb.Append(info.NegativeSign);
break;
case '%':
sb.Append(info.PercentSymbol);
break;
default:
sb.Append(ch);
break;
}
}
}
internal static unsafe void RoundNumber(ref NumberBuffer number, int pos, bool isCorrectlyRounded)
{
byte* dig = number.GetDigitsPointer();
int i = 0;
while (i < pos && dig[i] != '\0')
i++;
if ((i == pos) && ShouldRoundUp(dig, i, number.Kind, isCorrectlyRounded))
{
while (i > 0 && dig[i - 1] == '9')
i--;
if (i > 0)
{
dig[i - 1]++;
}
else
{
number.Scale++;
dig[0] = (byte)('1');
i = 1;
}
}
else
{
while (i > 0 && dig[i - 1] == '0')
i--;
}
if (i == 0)
{
if (number.Kind != NumberBufferKind.FloatingPoint)
{
// The integer types don't have a concept of -0 and decimal always format -0 as 0
number.IsNegative = false;
}
number.Scale = 0; // Decimals with scale ('0.00') should be rounded.
}
dig[i] = (byte)('\0');
number.DigitsCount = i;
number.CheckConsistency();
bool ShouldRoundUp(byte* _dig, int _i, NumberBufferKind numberKind, bool _isCorrectlyRounded)
{
// We only want to round up if the digit is greater than or equal to 5 and we are
// not rounding a floating-point number. If we are rounding a floating-point number
// we have one of two cases.
//
// In the case of a standard numeric-format specifier, the exact and correctly rounded
// string will have been produced. In this scenario, pos will have pointed to the
// terminating null for the buffer and so this will return false.
//
// However, in the case of a custom numeric-format specifier, we currently fall back
// to generating Single/DoublePrecisionCustomFormat digits and then rely on this
// function to round correctly instead. This can unfortunately lead to double-rounding
// bugs but is the best we have right now due to back-compat concerns.
byte digit = _dig[_i];
if ((digit == '\0') || _isCorrectlyRounded)
{
// Fast path for the common case with no rounding
return false;
}
// Values greater than or equal to 5 should round up, otherwise we round down. The IEEE
// 754 spec actually dictates that ties (exactly 5) should round to the nearest even number
// but that can have undesired behavior for custom numeric format strings. This probably
// needs further thought for .NET 5 so that we can be spec compliant and so that users
// can get the desired rounding behavior for their needs.
return digit >= '5';
}
}
private static unsafe int FindSection(ReadOnlySpan<char> format, int section)
{
int src;
char ch;
if (section == 0)
return 0;
fixed (char* pFormat = &MemoryMarshal.GetReference(format))
{
src = 0;
while (true)
{
if (src >= format.Length)
{
return 0;
}
switch (ch = pFormat[src++])
{
case '\'':
case '"':
while (src < format.Length && pFormat[src] != 0 && pFormat[src++] != ch) ;
break;
case '\\':
if (src < format.Length && pFormat[src] != 0)
src++;
break;
case ';':
if (--section != 0)
break;
if (src < format.Length && pFormat[src] != 0 && pFormat[src] != ';')
return src;
goto case '\0';
case '\0':
return 0;
}
}
}
}
private static uint Low32(ulong value) => (uint)value;
private static uint High32(ulong value) => (uint)((value & 0xFFFFFFFF00000000) >> 32);
private static uint Int64DivMod1E9(ref ulong value)
{
uint rem = (uint)(value % 1000000000);
value /= 1000000000;
return rem;
}
private static ulong ExtractFractionAndBiasedExponent(double value, out int exponent)
{
ulong bits = (ulong)(BitConverter.DoubleToInt64Bits(value));
ulong fraction = (bits & 0xFFFFFFFFFFFFF);
exponent = ((int)(bits >> 52) & 0x7FF);
if (exponent != 0)
{
// For normalized value, according to https://en.wikipedia.org/wiki/Double-precision_floating-point_format
// value = 1.fraction * 2^(exp - 1023)
// = (1 + mantissa / 2^52) * 2^(exp - 1023)
// = (2^52 + mantissa) * 2^(exp - 1023 - 52)
//
// So f = (2^52 + mantissa), e = exp - 1075;
fraction |= (1UL << 52);
exponent -= 1075;
}
else
{
// For denormalized value, according to https://en.wikipedia.org/wiki/Double-precision_floating-point_format
// value = 0.fraction * 2^(1 - 1023)
// = (mantissa / 2^52) * 2^(-1022)
// = mantissa * 2^(-1022 - 52)
// = mantissa * 2^(-1074)
// So f = mantissa, e = -1074
exponent = -1074;
}
return fraction;
}
private static uint ExtractFractionAndBiasedExponent(float value, out int exponent)
{
uint bits = (uint)(SingleToInt32Bits(value));
uint fraction = (bits & 0x7FFFFF);
exponent = ((int)(bits >> 23) & 0xFF);
if (exponent != 0)
{
// For normalized value, according to https://en.wikipedia.org/wiki/Single-precision_floating-point_format
// value = 1.fraction * 2^(exp - 127)
// = (1 + mantissa / 2^23) * 2^(exp - 127)
// = (2^23 + mantissa) * 2^(exp - 127 - 23)
//
// So f = (2^23 + mantissa), e = exp - 150;
fraction |= (1U << 23);
exponent -= 150;
}
else
{
// For denormalized value, according to https://en.wikipedia.org/wiki/Single-precision_floating-point_format
// value = 0.fraction * 2^(1 - 127)
// = (mantissa / 2^23) * 2^(-126)
// = mantissa * 2^(-126 - 23)
// = mantissa * 2^(-149)
// So f = mantissa, e = -149
exponent = -149;
}
return fraction;
}
static string FastAllocateString(int length)
{
return new string('\0', length);
}
}
}