1067 lines
48 KiB
C#
1067 lines
48 KiB
C#
// Licensed to the .NET Foundation under one or more agreements.
|
|
// The .NET Foundation licenses this file to you under the MIT license.
|
|
// See the LICENSE file in the project root for more information.
|
|
|
|
using System.Diagnostics;
|
|
using System.Runtime.CompilerServices;
|
|
|
|
namespace System
|
|
{
|
|
internal static partial class Number
|
|
{
|
|
// This is a port of the `Grisu3` implementation here: https://github.com/google/double-conversion/blob/a711666ddd063eb1e4b181a6cb981d39a1fc8bac/double-conversion/fast-dtoa.cc
|
|
// The backing algorithm and the proofs behind it are described in more detail here: http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf
|
|
// ========================================================================================================================================
|
|
//
|
|
// Overview:
|
|
//
|
|
// The general idea behind Grisu3 is to leverage additional bits and cached powers of ten to generate the correct digits.
|
|
// The algorithm is imprecise for some numbers. Fortunately, the algorithm itself can determine this scenario and gives us
|
|
// a result indicating success or failure. We must fallback to a different algorithm for the failing scenario.
|
|
internal static class Grisu3
|
|
{
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
static unsafe bool IsNegative(double d)
|
|
{
|
|
return BitConverter.DoubleToInt64Bits(d) < 0;
|
|
}
|
|
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
static unsafe bool IsNegativeInfinity(float f)
|
|
{
|
|
return f == float.NegativeInfinity;
|
|
}
|
|
|
|
private const int CachedPowersDecimalExponentDistance = 8;
|
|
private const int CachedPowersMinDecimalExponent = -348;
|
|
private const int CachedPowersPowerMaxDecimalExponent = 340;
|
|
private const int CachedPowersOffset = -CachedPowersMinDecimalExponent;
|
|
|
|
// 1 / Log2(10)
|
|
private const double D1Log210 = 0.301029995663981195;
|
|
|
|
// The minimal and maximal target exponents define the range of w's binary exponent,
|
|
// where w is the result of multiplying the input by a cached power of ten.
|
|
//
|
|
// A different range might be chosen on a different platform, to optimize digit generation,
|
|
// but a smaller range requires more powers of ten to be cached.
|
|
private const int MaximalTargetExponent = -32;
|
|
private const int MinimalTargetExponent = -60;
|
|
|
|
private static readonly short[] s_CachedPowersBinaryExponent = new short[]
|
|
{
|
|
-1220,
|
|
-1193,
|
|
-1166,
|
|
-1140,
|
|
-1113,
|
|
-1087,
|
|
-1060,
|
|
-1034,
|
|
-1007,
|
|
-980,
|
|
-954,
|
|
-927,
|
|
-901,
|
|
-874,
|
|
-847,
|
|
-821,
|
|
-794,
|
|
-768,
|
|
-741,
|
|
-715,
|
|
-688,
|
|
-661,
|
|
-635,
|
|
-608,
|
|
-582,
|
|
-555,
|
|
-529,
|
|
-502,
|
|
-475,
|
|
-449,
|
|
-422,
|
|
-396,
|
|
-369,
|
|
-343,
|
|
-316,
|
|
-289,
|
|
-263,
|
|
-236,
|
|
-210,
|
|
-183,
|
|
-157,
|
|
-130,
|
|
-103,
|
|
-77,
|
|
-50,
|
|
-24,
|
|
3,
|
|
30,
|
|
56,
|
|
83,
|
|
109,
|
|
136,
|
|
162,
|
|
189,
|
|
216,
|
|
242,
|
|
269,
|
|
295,
|
|
322,
|
|
348,
|
|
375,
|
|
402,
|
|
428,
|
|
455,
|
|
481,
|
|
508,
|
|
534,
|
|
561,
|
|
588,
|
|
614,
|
|
641,
|
|
667,
|
|
694,
|
|
720,
|
|
747,
|
|
774,
|
|
800,
|
|
827,
|
|
853,
|
|
880,
|
|
907,
|
|
933,
|
|
960,
|
|
986,
|
|
1013,
|
|
1039,
|
|
1066,
|
|
};
|
|
|
|
private static readonly short[] s_CachedPowersDecimalExponent = new short[]
|
|
{
|
|
CachedPowersMinDecimalExponent,
|
|
-340,
|
|
-332,
|
|
-324,
|
|
-316,
|
|
-308,
|
|
-300,
|
|
-292,
|
|
-284,
|
|
-276,
|
|
-268,
|
|
-260,
|
|
-252,
|
|
-244,
|
|
-236,
|
|
-228,
|
|
-220,
|
|
-212,
|
|
-204,
|
|
-196,
|
|
-188,
|
|
-180,
|
|
-172,
|
|
-164,
|
|
-156,
|
|
-148,
|
|
-140,
|
|
-132,
|
|
-124,
|
|
-116,
|
|
-108,
|
|
-100,
|
|
-92,
|
|
-84,
|
|
-76,
|
|
-68,
|
|
-60,
|
|
-52,
|
|
-44,
|
|
-36,
|
|
-28,
|
|
-20,
|
|
-12,
|
|
-4,
|
|
4,
|
|
12,
|
|
20,
|
|
28,
|
|
36,
|
|
44,
|
|
52,
|
|
60,
|
|
68,
|
|
76,
|
|
84,
|
|
92,
|
|
100,
|
|
108,
|
|
116,
|
|
124,
|
|
132,
|
|
140,
|
|
148,
|
|
156,
|
|
164,
|
|
172,
|
|
180,
|
|
188,
|
|
196,
|
|
204,
|
|
212,
|
|
220,
|
|
228,
|
|
236,
|
|
244,
|
|
252,
|
|
260,
|
|
268,
|
|
276,
|
|
284,
|
|
292,
|
|
300,
|
|
308,
|
|
316,
|
|
324,
|
|
332,
|
|
CachedPowersPowerMaxDecimalExponent,
|
|
};
|
|
|
|
private static readonly ulong[] s_CachedPowersSignificand = new ulong[]
|
|
{
|
|
0xFA8FD5A0081C0288,
|
|
0xBAAEE17FA23EBF76,
|
|
0x8B16FB203055AC76,
|
|
0xCF42894A5DCE35EA,
|
|
0x9A6BB0AA55653B2D,
|
|
0xE61ACF033D1A45DF,
|
|
0xAB70FE17C79AC6CA,
|
|
0xFF77B1FCBEBCDC4F,
|
|
0xBE5691EF416BD60C,
|
|
0x8DD01FAD907FFC3C,
|
|
0xD3515C2831559A83,
|
|
0x9D71AC8FADA6C9B5,
|
|
0xEA9C227723EE8BCB,
|
|
0xAECC49914078536D,
|
|
0x823C12795DB6CE57,
|
|
0xC21094364DFB5637,
|
|
0x9096EA6F3848984F,
|
|
0xD77485CB25823AC7,
|
|
0xA086CFCD97BF97F4,
|
|
0xEF340A98172AACE5,
|
|
0xB23867FB2A35B28E,
|
|
0x84C8D4DFD2C63F3B,
|
|
0xC5DD44271AD3CDBA,
|
|
0x936B9FCEBB25C996,
|
|
0xDBAC6C247D62A584,
|
|
0xA3AB66580D5FDAF6,
|
|
0xF3E2F893DEC3F126,
|
|
0xB5B5ADA8AAFF80B8,
|
|
0x87625F056C7C4A8B,
|
|
0xC9BCFF6034C13053,
|
|
0x964E858C91BA2655,
|
|
0xDFF9772470297EBD,
|
|
0xA6DFBD9FB8E5B88F,
|
|
0xF8A95FCF88747D94,
|
|
0xB94470938FA89BCF,
|
|
0x8A08F0F8BF0F156B,
|
|
0xCDB02555653131B6,
|
|
0x993FE2C6D07B7FAC,
|
|
0xE45C10C42A2B3B06,
|
|
0xAA242499697392D3,
|
|
0xFD87B5F28300CA0E,
|
|
0xBCE5086492111AEB,
|
|
0x8CBCCC096F5088CC,
|
|
0xD1B71758E219652C,
|
|
0x9C40000000000000,
|
|
0xE8D4A51000000000,
|
|
0xAD78EBC5AC620000,
|
|
0x813F3978F8940984,
|
|
0xC097CE7BC90715B3,
|
|
0x8F7E32CE7BEA5C70,
|
|
0xD5D238A4ABE98068,
|
|
0x9F4F2726179A2245,
|
|
0xED63A231D4C4FB27,
|
|
0xB0DE65388CC8ADA8,
|
|
0x83C7088E1AAB65DB,
|
|
0xC45D1DF942711D9A,
|
|
0x924D692CA61BE758,
|
|
0xDA01EE641A708DEA,
|
|
0xA26DA3999AEF774A,
|
|
0xF209787BB47D6B85,
|
|
0xB454E4A179DD1877,
|
|
0x865B86925B9BC5C2,
|
|
0xC83553C5C8965D3D,
|
|
0x952AB45CFA97A0B3,
|
|
0xDE469FBD99A05FE3,
|
|
0xA59BC234DB398C25,
|
|
0xF6C69A72A3989F5C,
|
|
0xB7DCBF5354E9BECE,
|
|
0x88FCF317F22241E2,
|
|
0xCC20CE9BD35C78A5,
|
|
0x98165AF37B2153DF,
|
|
0xE2A0B5DC971F303A,
|
|
0xA8D9D1535CE3B396,
|
|
0xFB9B7CD9A4A7443C,
|
|
0xBB764C4CA7A44410,
|
|
0x8BAB8EEFB6409C1A,
|
|
0xD01FEF10A657842C,
|
|
0x9B10A4E5E9913129,
|
|
0xE7109BFBA19C0C9D,
|
|
0xAC2820D9623BF429,
|
|
0x80444B5E7AA7CF85,
|
|
0xBF21E44003ACDD2D,
|
|
0x8E679C2F5E44FF8F,
|
|
0xD433179D9C8CB841,
|
|
0x9E19DB92B4E31BA9,
|
|
0xEB96BF6EBADF77D9,
|
|
0xAF87023B9BF0EE6B,
|
|
};
|
|
|
|
private static readonly uint[] s_SmallPowersOfTen = new uint[]
|
|
{
|
|
1, // 10^0
|
|
10, // 10^1
|
|
100, // 10^2
|
|
1000, // 10^3
|
|
10000, // 10^4
|
|
100000, // 10^5
|
|
1000000, // 10^6
|
|
10000000, // 10^7
|
|
100000000, // 10^8
|
|
1000000000, // 10^9
|
|
};
|
|
|
|
public static bool TryRunDouble(double value, int requestedDigits, ref NumberBuffer number)
|
|
{
|
|
double v = IsNegative(value) ? -value : value;
|
|
|
|
Debug.Assert(v > 0);
|
|
//Debug.Assert(double.IsFinite(v));
|
|
|
|
int length;
|
|
int decimalExponent;
|
|
bool result;
|
|
|
|
if (requestedDigits == -1)
|
|
{
|
|
DiyFp w = DiyFp.CreateAndGetBoundaries(v, out DiyFp boundaryMinus, out DiyFp boundaryPlus).Normalize();
|
|
result = TryRunShortest(in boundaryMinus, in w, in boundaryPlus, number.Digits, out length, out decimalExponent);
|
|
}
|
|
else
|
|
{
|
|
DiyFp w = new DiyFp(v).Normalize();
|
|
result = TryRunCounted(in w, requestedDigits, number.Digits, out length, out decimalExponent);
|
|
}
|
|
|
|
if (result)
|
|
{
|
|
Debug.Assert((requestedDigits == -1) || (length == requestedDigits));
|
|
|
|
number.Scale = length + decimalExponent;
|
|
number.Digits[length] = (byte)('\0');
|
|
number.DigitsCount = length;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static bool TryRunSingle(float value, int requestedDigits, ref NumberBuffer number)
|
|
{
|
|
float v = IsNegative(value) ? -value : value;
|
|
|
|
Debug.Assert(v > 0);
|
|
//Debug.Assert(float.IsFinite(v));
|
|
|
|
int length;
|
|
int decimalExponent;
|
|
bool result;
|
|
|
|
if (requestedDigits == -1)
|
|
{
|
|
DiyFp w = DiyFp.CreateAndGetBoundaries(v, out DiyFp boundaryMinus, out DiyFp boundaryPlus).Normalize();
|
|
result = TryRunShortest(in boundaryMinus, in w, in boundaryPlus, number.Digits, out length, out decimalExponent);
|
|
}
|
|
else
|
|
{
|
|
DiyFp w = new DiyFp(v).Normalize();
|
|
result = TryRunCounted(in w, requestedDigits, number.Digits, out length, out decimalExponent);
|
|
}
|
|
|
|
if (result)
|
|
{
|
|
Debug.Assert((requestedDigits == -1) || (length == requestedDigits));
|
|
|
|
number.Scale = length + decimalExponent;
|
|
number.Digits[length] = (byte)('\0');
|
|
number.DigitsCount = length;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// The counted version of Grisu3 only generates requestedDigits number of digits.
|
|
// This version does not generate the shortest representation, and with enough requested digits 0.1 will at some point print as 0.9999999...
|
|
// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and therefore the rounding strategy for halfway cases is irrelevant.
|
|
private static bool TryRunCounted(in DiyFp w, int requestedDigits, Span<byte> buffer, out int length, out int decimalExponent)
|
|
{
|
|
Debug.Assert(requestedDigits > 0);
|
|
|
|
int tenMkMinimalBinaryExponent = MinimalTargetExponent - (w.e + DiyFp.SignificandSize);
|
|
int tenMkMaximalBinaryExponent = MaximalTargetExponent - (w.e + DiyFp.SignificandSize);
|
|
|
|
DiyFp tenMk = GetCachedPowerForBinaryExponentRange(tenMkMinimalBinaryExponent, tenMkMaximalBinaryExponent, out int mk);
|
|
|
|
Debug.Assert(MinimalTargetExponent <= (w.e + tenMk.e + DiyFp.SignificandSize));
|
|
Debug.Assert(MaximalTargetExponent >= (w.e + tenMk.e + DiyFp.SignificandSize));
|
|
|
|
// Note that tenMk is only an approximation of 10^-k.
|
|
// A DiyFp only contains a 64-bit significand and tenMk is thus only precise up to 64-bits.
|
|
|
|
// The DiyFp.Multiply procedure rounds its result and tenMk is approximated too.
|
|
// The variable scaledW (as well as scaledBoundaryMinus/Plus) are now off by a small amount.
|
|
//
|
|
// In fact, scaledW - (w * 10^k) < 1ulp (unit in last place) of scaledW.
|
|
// In other words, let f = scaledW.f and e = scaledW.e, then:
|
|
// (f - 1) * 2^e < (w * 10^k) < (f + 1) * 2^e
|
|
|
|
DiyFp scaledW = w.Multiply(in tenMk);
|
|
|
|
// We now have (double)(scaledW * 10^-mk).
|
|
//
|
|
// DigitGenCounted will generate the first requestedDigits of scaledW and return together with a kappa such that:
|
|
// scaledW ~= buffer * 10^kappa.
|
|
//
|
|
// It will not always be exactly the same since DigitGenCounted only produces a limited number of digits.
|
|
|
|
bool result = TryDigitGenCounted(in scaledW, requestedDigits, buffer, out length, out int kappa);
|
|
decimalExponent = -mk + kappa;
|
|
return result;
|
|
}
|
|
|
|
// Provides a decimal representation of v.
|
|
// Returns true if it succeeds; otherwise, the result cannot be trusted.
|
|
//
|
|
// There will be length digits inside the buffer (not null-terminated).
|
|
// If the function returns true then:
|
|
// v == (double)(buffer * 10^decimalExponent)
|
|
//
|
|
// The digits in the buffer are the shortest represenation possible (no 0.09999999999999999 instead of 0.1).
|
|
// The shorter representation will even be chosen if the longer one would be closer to v.
|
|
//
|
|
// The last digit will be closest to the actual v.
|
|
// That is, even if several digits might correctly yield 'v' when read again, the closest will be computed.
|
|
private static bool TryRunShortest(in DiyFp boundaryMinus, in DiyFp w, in DiyFp boundaryPlus, Span<byte> buffer, out int length, out int decimalExponent)
|
|
{
|
|
// boundaryMinus and boundaryPlus are the boundaries between v and its closest floating-point neighbors.
|
|
// Any number strictly between boundaryMinus and boundaryPlus will round to v when converted to a double.
|
|
// Grisu3 will never output representations that lie exactly on a boundary.
|
|
|
|
Debug.Assert(boundaryPlus.e == w.e);
|
|
|
|
int tenMkMinimalBinaryExponent = MinimalTargetExponent - (w.e + DiyFp.SignificandSize);
|
|
int tenMkMaximalBinaryExponent = MaximalTargetExponent - (w.e + DiyFp.SignificandSize);
|
|
|
|
DiyFp tenMk = GetCachedPowerForBinaryExponentRange(tenMkMinimalBinaryExponent, tenMkMaximalBinaryExponent, out int mk);
|
|
|
|
Debug.Assert(MinimalTargetExponent <= (w.e + tenMk.e + DiyFp.SignificandSize));
|
|
Debug.Assert(MaximalTargetExponent >= (w.e + tenMk.e + DiyFp.SignificandSize));
|
|
|
|
// Note that tenMk is only an approximation of 10^-k.
|
|
// A DiyFp only contains a 64-bit significan and tenMk is thus only precise up to 64-bits.
|
|
|
|
// The DiyFp.Multiply procedure rounds its result and tenMk is approximated too.
|
|
// The variable scaledW (as well as scaledBoundaryMinus/Plus) are now off by a small amount.
|
|
//
|
|
// In fact, scaledW - (w * 10^k) < 1ulp (unit in last place) of scaledW.
|
|
// In other words, let f = scaledW.f and e = scaledW.e, then:
|
|
// (f - 1) * 2^e < (w * 10^k) < (f + 1) * 2^e
|
|
|
|
DiyFp scaledW = w.Multiply(in tenMk);
|
|
Debug.Assert(scaledW.e == (boundaryPlus.e + tenMk.e + DiyFp.SignificandSize));
|
|
|
|
// In theory, it would be possible to avoid some recomputations by computing the difference between w
|
|
// and boundaryMinus/Plus (a power of 2) and to compute scaledBoundaryMinus/Plus by subtracting/adding
|
|
// from scaledW. However, the code becomes much less readable and the speed enhancements are not terrific.
|
|
|
|
DiyFp scaledBoundaryMinus = boundaryMinus.Multiply(in tenMk);
|
|
DiyFp scaledBoundaryPlus = boundaryPlus.Multiply(in tenMk);
|
|
|
|
// DigitGen will generate the digits of scaledW. Therefore, we have:
|
|
// v == (double)(scaledW * 10^-mk)
|
|
//
|
|
// Set decimalExponent == -mk and pass it to DigitGen and if scaledW is not an integer than it will be updated.
|
|
// For instance, if scaledW == 1.23 then the buffer will be filled with "123" and the decimalExponent will be decreased by 2.
|
|
|
|
bool result = TryDigitGenShortest(in scaledBoundaryMinus, in scaledW, in scaledBoundaryPlus, buffer, out length, out int kappa);
|
|
decimalExponent = -mk + kappa;
|
|
return result;
|
|
}
|
|
|
|
// Returns the biggest power of ten that is less than or equal to the given number.
|
|
// We furthermore receive the maximum number of bits 'number' has.
|
|
//
|
|
// Returns power == 10^(exponent) such that
|
|
// power <= number < power * 10
|
|
// If numberBits == 0, then 0^(0-1) is returned.
|
|
// The number of bits must be <= 32.
|
|
//
|
|
// Preconditions:
|
|
// number < (1 << (numberBits + 1))
|
|
private static uint BiggestPowerTen(uint number, int numberBits, out int exponentPlusOne)
|
|
{
|
|
// Inspired by the method for finding an integer log base 10 from here:
|
|
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
|
|
|
|
Debug.Assert(number < (1U << (numberBits + 1)));
|
|
|
|
// 1233/4096 is approximately 1/log2(10)
|
|
int exponentGuess = ((numberBits + 1) * 1233) >> 12;
|
|
Debug.Assert((uint)(exponentGuess) < s_SmallPowersOfTen.Length);
|
|
|
|
uint power = s_SmallPowersOfTen[exponentGuess];
|
|
|
|
// We don't have any guarantees that 2^numberBits <= number
|
|
if (number < power)
|
|
{
|
|
exponentGuess--;
|
|
power = s_SmallPowersOfTen[exponentGuess];
|
|
}
|
|
|
|
exponentPlusOne = exponentGuess + 1;
|
|
return power;
|
|
}
|
|
|
|
// Generates (at most) requestedDigits of input number w.
|
|
//
|
|
// w is a floating-point number (DiyFp), consisting of a significand and an exponent.
|
|
// Its exponent is bounded by MinimalTargetExponent and MaximalTargetExponent, hence:
|
|
// -60 <= w.e <= -32
|
|
//
|
|
// Returns false if it fails, in which case the generated digits in the buffer should not be used.
|
|
//
|
|
// Preconditions:
|
|
// w is correct up to 1 ulp (unit in last place). That is, its error must be strictly less than a unit of its last digit.
|
|
// MinimalTargetExponent <= w.e <= MaximalTargetExponent
|
|
//
|
|
// Postconditions:
|
|
// Returns false if the procedure fails; otherwise:
|
|
// * buffer is not null-terminated, but length contains the number of digits.
|
|
// * The representation in buffer is the most precise representation of requestedDigits digits.
|
|
// * buffer contains at most requestedDigits digits of w. If there are less than requestedDigits digits then some trailing '0's have been removed.
|
|
// * kappa is such that w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
|
|
//
|
|
// This procedure takes into account the imprecision of its input numbers.
|
|
// If the precision is not enough to guarantee all the postconditions, then false is returned.
|
|
// This usually happens rarely, but the failure-rate increases with higher requestedDigits
|
|
private static bool TryDigitGenCounted(in DiyFp w, int requestedDigits, Span<byte> buffer, out int length, out int kappa)
|
|
{
|
|
Debug.Assert(MinimalTargetExponent <= w.e);
|
|
Debug.Assert(w.e <= MaximalTargetExponent);
|
|
Debug.Assert(MinimalTargetExponent >= -60);
|
|
Debug.Assert(MaximalTargetExponent <= -32);
|
|
|
|
// w is assumed to have an error less than 1 unit.
|
|
// Whenever w is scaled we also scale its error.
|
|
ulong wError = 1;
|
|
|
|
// We cut the input number into two parts: the integral digits and the fractional digits.
|
|
// We don't emit any decimal separator, but adapt kapp instead.
|
|
// For example: instead of writing "1.2", we put "12" into the buffer and increase kappa by 1.
|
|
var one = new DiyFp(1UL << -w.e, w.e);
|
|
|
|
// Division by one is a shift.
|
|
uint integrals = (uint)(w.f >> -one.e);
|
|
|
|
// Modulo by one is an and.
|
|
ulong fractionals = w.f & (one.f - 1);
|
|
|
|
// We deviate from the original algorithm here and do some early checks to determine if we can satisfy requestedDigits.
|
|
// If we determine that we can't, we exit early and avoid most of the heavy lifting that the algorithm otherwise does.
|
|
//
|
|
// When fractionals is zero, we can easily determine if integrals can satisfy requested digits:
|
|
// If requestedDigits >= 11, integrals is not able to exhaust the count by itself since 10^(11 -1) > uint.MaxValue >= integrals.
|
|
// If integrals < 10^(requestedDigits - 1), integrals cannot exhaust the count.
|
|
// Otherwise, integrals might be able to exhaust the count and we need to execute the rest of the code.
|
|
if ((fractionals == 0) && ((requestedDigits >= 11) || (integrals < s_SmallPowersOfTen[requestedDigits - 1])))
|
|
{
|
|
Debug.Assert(buffer[0] == '\0');
|
|
length = 0;
|
|
kappa = 0;
|
|
return false;
|
|
}
|
|
|
|
uint divisor = BiggestPowerTen(integrals, DiyFp.SignificandSize - (-one.e), out kappa);
|
|
length = 0;
|
|
|
|
// Loop invariant:
|
|
// buffer = w / 10^kappa (integer division)
|
|
// These invariants hold for the first iteration:
|
|
// kappa has been initialized with the divisor exponent + 1
|
|
// The divisor is the biggest power of ten that is smaller than integrals
|
|
while (kappa > 0)
|
|
{
|
|
uint digit = MathEx.DivRem(integrals, divisor, out integrals);
|
|
Debug.Assert(digit <= 9);
|
|
buffer[length] = (byte)('0' + digit);
|
|
|
|
length++;
|
|
requestedDigits--;
|
|
kappa--;
|
|
|
|
// Note that kappa now equals the exponent of the
|
|
// divisor and that the invariant thus holds again.
|
|
if (requestedDigits == 0)
|
|
{
|
|
break;
|
|
}
|
|
|
|
divisor /= 10;
|
|
}
|
|
|
|
if (requestedDigits == 0)
|
|
{
|
|
ulong rest = ((ulong)(integrals) << -one.e) + fractionals;
|
|
return TryRoundWeedCounted(
|
|
buffer,
|
|
length,
|
|
rest,
|
|
tenKappa: ((ulong)(divisor)) << -one.e,
|
|
unit: wError,
|
|
ref kappa
|
|
);
|
|
}
|
|
|
|
// The integrals have been generated and we are at the point of the decimal separator.
|
|
// In the following loop, we simply multiply the remaining digits by 10 and divide by one.
|
|
// We just need to pay attention to multiply associated data (the unit), too.
|
|
// Note that the multiplication by 10 does not overflow because:
|
|
// w.e >= -60 and thus one.e >= -60
|
|
|
|
Debug.Assert(one.e >= MinimalTargetExponent);
|
|
Debug.Assert(fractionals < one.f);
|
|
Debug.Assert((ulong.MaxValue / 10) >= one.f);
|
|
|
|
while ((requestedDigits > 0) && (fractionals > wError))
|
|
{
|
|
fractionals *= 10;
|
|
wError *= 10;
|
|
|
|
// Integer division by one.
|
|
uint digit = (uint)(fractionals >> -one.e);
|
|
Debug.Assert(digit <= 9);
|
|
buffer[length] = (byte)('0' + digit);
|
|
|
|
length++;
|
|
requestedDigits--;
|
|
kappa--;
|
|
|
|
// Modulo by one.
|
|
fractionals &= (one.f - 1);
|
|
}
|
|
|
|
if (requestedDigits != 0)
|
|
{
|
|
buffer[0] = (byte)('\0');
|
|
length = 0;
|
|
kappa = 0;
|
|
return false;
|
|
}
|
|
|
|
return TryRoundWeedCounted(
|
|
buffer,
|
|
length,
|
|
rest: fractionals,
|
|
tenKappa: one.f,
|
|
unit: wError,
|
|
ref kappa
|
|
);
|
|
}
|
|
|
|
// Generates the digits of input number w.
|
|
//
|
|
// w is a floating-point number (DiyFp), consisting of a significand and an exponent.
|
|
// Its exponent is bounded by kMinimalTargetExponent and kMaximalTargetExponent, hence:
|
|
// -60 <= w.e() <= -32.
|
|
//
|
|
// Returns false if it fails, in which case the generated digits in the buffer should not be used.
|
|
//
|
|
// Preconditions:
|
|
// low, w and high are correct up to 1 ulp (unit in the last place). That is, their error must be less than a unit of their last digits.
|
|
// low.e() == w.e() == high.e()
|
|
// low < w < high, and taking into account their error: low~ <= high~
|
|
// kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
|
|
//
|
|
// Postconditions:
|
|
// Returns false if procedure fails; otherwise:
|
|
// * buffer is not null-terminated, but len contains the number of digits.
|
|
// * buffer contains the shortest possible decimal digit-sequence such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the correct values of low and high (without their error).
|
|
// * If more than one decimal representation gives the minimal number of decimal digits then the one closest to W (where W is the correct value of w) is chosen.
|
|
//
|
|
// This procedure takes into account the imprecision of its input numbers.
|
|
// If the precision is not enough to guarantee all the postconditions then false is returned.
|
|
// This usually happens rarely (~0.5%).
|
|
//
|
|
// Say, for the sake of example, that:
|
|
// w.e() == -48, and w.f() == 0x1234567890abcdef
|
|
//
|
|
// w's value can be computed by w.f() * 2^w.e()
|
|
//
|
|
// We can obtain w's integral digits by simply shifting w.f() by -w.e().
|
|
// -> w's integral part is 0x1234
|
|
// w's fractional part is therefore 0x567890abcdef.
|
|
//
|
|
// Printing w's integral part is easy (simply print 0x1234 in decimal).
|
|
//
|
|
// In order to print its fraction we repeatedly multiply the fraction by 10 and get each digit.
|
|
// For example, the first digit after the point would be computed by
|
|
// (0x567890abcdef * 10) >> 48. -> 3
|
|
//
|
|
// The whole thing becomes slightly more complicated because we want to stop once we have enough digits.
|
|
// That is, once the digits inside the buffer represent 'w' we can stop.
|
|
//
|
|
// Everything inside the interval low - high represents w.
|
|
// However we have to pay attention to low, high and w's imprecision.
|
|
private static bool TryDigitGenShortest(in DiyFp low, in DiyFp w, in DiyFp high, Span<byte> buffer, out int length, out int kappa)
|
|
{
|
|
Debug.Assert(low.e == w.e);
|
|
Debug.Assert(w.e == high.e);
|
|
|
|
Debug.Assert((low.f + 1) <= (high.f - 1));
|
|
|
|
Debug.Assert(MinimalTargetExponent <= w.e);
|
|
Debug.Assert(w.e <= MaximalTargetExponent);
|
|
|
|
// low, w, and high are imprecise, but by less than one ulp (unit in the last place).
|
|
//
|
|
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that the new numbers
|
|
// are outside of the interval we want the final representation to lie in.
|
|
//
|
|
// Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield numbers that
|
|
// are certain to lie in the interval. We will use this fact later on.
|
|
//
|
|
// We will now start by generating the digits within the uncertain interval.
|
|
// Later, we will weed out representations that lie outside the safe interval and thus might lie outside the correct interval.
|
|
|
|
ulong unit = 1;
|
|
|
|
var tooLow = new DiyFp(low.f - unit, low.e);
|
|
var tooHigh = new DiyFp(high.f + unit, high.e);
|
|
|
|
// tooLow and tooHigh are guaranteed to lie outside the interval we want the generated number in.
|
|
|
|
DiyFp unsafeInterval = tooHigh.Subtract(in tooLow);
|
|
|
|
// We now cut the input number into two parts: the integral digits and the fractional digits.
|
|
// We will not write any decimal separator, but adapt kappa instead.
|
|
//
|
|
// Reminder: we are currently computing the digits (Stored inside the buffer) such that:
|
|
// tooLow < buffer * 10^kappa < tooHigh
|
|
//
|
|
// We use tooHigh for the digitGeneration and stop as soon as possible.
|
|
// If we stop early, we effectively round down.
|
|
|
|
var one = new DiyFp(1UL << -w.e, w.e);
|
|
|
|
// Division by one is a shift.
|
|
uint integrals = (uint)(tooHigh.f >> -one.e);
|
|
|
|
// Modulo by one is an and.
|
|
ulong fractionals = tooHigh.f & (one.f - 1);
|
|
|
|
uint divisor = BiggestPowerTen(integrals, DiyFp.SignificandSize - (-one.e), out kappa);
|
|
length = 0;
|
|
|
|
// Loop invariant:
|
|
// buffer = tooHigh / 10^kappa (integer division)
|
|
// These invariants hold for the first iteration:
|
|
// kappa has been initialized with the divisor exponent + 1
|
|
// The divisor is the biggest power of ten that is smaller than integrals
|
|
while (kappa > 0)
|
|
{
|
|
uint digit = MathEx.DivRem(integrals, divisor, out integrals);
|
|
Debug.Assert(digit <= 9);
|
|
buffer[length] = (byte)('0' + digit);
|
|
|
|
length++;
|
|
kappa--;
|
|
|
|
// Note that kappa now equals the exponent of the
|
|
// divisor and that the invariant thus holds again.
|
|
|
|
ulong rest = ((ulong)(integrals) << -one.e) + fractionals;
|
|
|
|
// Invariant: tooHigh = buffer * 10^kappa + DiyFp(rest, one.e)
|
|
// Reminder: unsafeInterval.e == one.e
|
|
|
|
if (rest < unsafeInterval.f)
|
|
{
|
|
// Rounding down (by not emitting the remaining digits)
|
|
// yields a number that lies within the unsafe interval
|
|
|
|
return TryRoundWeedShortest(
|
|
buffer,
|
|
length,
|
|
tooHigh.Subtract(w).f,
|
|
unsafeInterval.f,
|
|
rest,
|
|
tenKappa: ((ulong)(divisor)) << -one.e,
|
|
unit
|
|
);
|
|
}
|
|
|
|
divisor /= 10;
|
|
}
|
|
|
|
// The integrals have been generated and we are at the point of the decimal separator.
|
|
// In the following loop, we simply multiply the remaining digits by 10 and divide by one.
|
|
// We just need to pay attention to multiply associated data (the unit), too.
|
|
// Note that the multiplication by 10 does not overflow because:
|
|
// w.e >= -60 and thus one.e >= -60
|
|
|
|
Debug.Assert(one.e >= MinimalTargetExponent);
|
|
Debug.Assert(fractionals < one.f);
|
|
Debug.Assert((ulong.MaxValue / 10) >= one.f);
|
|
|
|
while (true)
|
|
{
|
|
fractionals *= 10;
|
|
unit *= 10;
|
|
|
|
unsafeInterval = new DiyFp(unsafeInterval.f * 10, unsafeInterval.e);
|
|
|
|
// Integer division by one.
|
|
uint digit = (uint)(fractionals >> -one.e);
|
|
Debug.Assert(digit <= 9);
|
|
buffer[length] = (byte)('0' + digit);
|
|
|
|
length++;
|
|
kappa--;
|
|
|
|
// Modulo by one.
|
|
fractionals &= (one.f - 1);
|
|
|
|
if (fractionals < unsafeInterval.f)
|
|
{
|
|
return TryRoundWeedShortest(
|
|
buffer,
|
|
length,
|
|
tooHigh.Subtract(w).f * unit,
|
|
unsafeInterval.f,
|
|
rest: fractionals,
|
|
tenKappa: one.f,
|
|
unit
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns a cached power-of-ten with a binary exponent in the range [minExponent; maxExponent] (boundaries included).
|
|
private static DiyFp GetCachedPowerForBinaryExponentRange(int minExponent, int maxExponent, out int decimalExponent)
|
|
{
|
|
Debug.Assert(s_CachedPowersSignificand.Length == s_CachedPowersBinaryExponent.Length);
|
|
Debug.Assert(s_CachedPowersSignificand.Length == s_CachedPowersDecimalExponent.Length);
|
|
|
|
double k = Math.Ceiling((minExponent + DiyFp.SignificandSize - 1) * D1Log210);
|
|
int index = ((CachedPowersOffset + (int)(k) - 1) / CachedPowersDecimalExponentDistance) + 1;
|
|
|
|
Debug.Assert((uint)(index) < s_CachedPowersSignificand.Length);
|
|
|
|
Debug.Assert(minExponent <= s_CachedPowersBinaryExponent[index]);
|
|
Debug.Assert(s_CachedPowersBinaryExponent[index] <= maxExponent);
|
|
|
|
decimalExponent = s_CachedPowersDecimalExponent[index];
|
|
return new DiyFp(s_CachedPowersSignificand[index], s_CachedPowersBinaryExponent[index]);
|
|
}
|
|
|
|
// Rounds the buffer upwards if the result is closer to v by possibly adding 1 to the buffer.
|
|
// If the precision of the calculation is not sufficient to round correctly, return false.
|
|
//
|
|
// The rounding might shift the whole buffer, in which case, the kappy is adjusted.
|
|
// For example "99", kappa = 3 might become "10", kappa = 4.
|
|
//
|
|
// If (2 * rest) > tenKappa then the buffer needs to be round up.
|
|
// rest can have an error of +/- 1 unit.
|
|
// This function accounts for the imprecision and returns false if the rounding direction cannot be unambiguously determined.
|
|
//
|
|
// Preconditions:
|
|
// rest < tenKappa
|
|
private static bool TryRoundWeedCounted(Span<byte> buffer, int length, ulong rest, ulong tenKappa, ulong unit, ref int kappa)
|
|
{
|
|
Debug.Assert(rest < tenKappa);
|
|
|
|
// The following tests are done in a specific order to avoid overflows.
|
|
// They will work correctly with any ulong values of rest < tenKappa and unit.
|
|
//
|
|
// If the unit is too big, then we don't know which way to round.
|
|
// For example, a unit of 50 means that the real number lies within rest +/- 50.
|
|
// If 10^kappa == 40, then there is no way to tell which way to round.
|
|
//
|
|
// Even if unit is just half the size of 10^kappa we are already completely lost.
|
|
// And after the previous test, we know that the expression will not over/underflow.
|
|
if ((unit >= tenKappa) || ((tenKappa - unit) <= unit))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// If 2 * (rest + unit) <= 10^kappa, we can safely round down.
|
|
if (((tenKappa - rest) > rest) && ((tenKappa - (2 * rest)) >= (2 * unit)))
|
|
{
|
|
return true;
|
|
}
|
|
|
|
// If 2 * (rest - unit) >= 10^kappa, we can safely round up.
|
|
if ((rest > unit) && (tenKappa <= (rest - unit) || ((tenKappa - (rest - unit)) <= (rest - unit))))
|
|
{
|
|
// Increment the last digit recursively until we find a non '9' digit.
|
|
buffer[length - 1]++;
|
|
|
|
for (int i = (length - 1); i > 0; i--)
|
|
{
|
|
if (buffer[i] != ('0' + 10))
|
|
{
|
|
break;
|
|
}
|
|
|
|
buffer[i] = (byte)('0');
|
|
buffer[i - 1]++;
|
|
}
|
|
|
|
// If the first digit is now '0'+10, we had a buffer with all '9's.
|
|
// With the exception of the first digit, all digits are now '0'.
|
|
// Simply switch the first digit to '1' and adjust the kappa.
|
|
// For example, "99" becomes "10" and the power (the kappa) is increased.
|
|
if (buffer[0] == ('0' + 10))
|
|
{
|
|
buffer[0] = (byte)('1');
|
|
kappa++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Adjusts the last digit of the generated number and screens out generated solutions that may be inaccurate.
|
|
// A solution may be inaccurate if it is outside the safe interval or if we cannot provide that it is closer to the input than a neighboring representation of the same length.
|
|
//
|
|
// Input:
|
|
// buffer containing the digits of tooHigh / 10^kappa
|
|
// the buffer's length
|
|
// distanceTooHighW == (tooHigh - w).f * unit
|
|
// unsafeInterval == (tooHigh - tooLow).f * unit
|
|
// rest = (tooHigh - buffer * 10^kapp).f * unit
|
|
// tenKappa = 10^kappa * unit
|
|
// unit = the common multiplier
|
|
//
|
|
// Output:
|
|
// Returns true if the buffer is guaranteed to contain the closest representable number to the input.
|
|
//
|
|
// Modifies the generated digits in the buffer to approach (round towards) w.
|
|
private static bool TryRoundWeedShortest(Span<byte> buffer, int length, ulong distanceTooHighW, ulong unsafeInterval, ulong rest, ulong tenKappa, ulong unit)
|
|
{
|
|
ulong smallDistance = distanceTooHighW - unit;
|
|
ulong bigDistance = distanceTooHighW + unit;
|
|
|
|
// Let wLow = tooHigh - bigDistance, and wHigh = tooHigh - smallDistance.
|
|
//
|
|
// Note: wLow < w < wHigh
|
|
//
|
|
// The real w * unit must lie somewhere inside the interval
|
|
// ]w_low; w_high[ (often written as "(w_low; w_high)")
|
|
|
|
// Basically the buffer currently contains a number in the unsafe interval
|
|
// ]too_low; too_high[ with too_low < w < too_high
|
|
//
|
|
// tooHigh - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
// ^v 1 unit ^ ^ ^ ^
|
|
// boundaryHigh --------------------- . . . .
|
|
// ^v 1 unit . . . .
|
|
// - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
|
|
// . . ^ . .
|
|
// . bigDistance . . .
|
|
// . . . . rest
|
|
// smallDistance . . . .
|
|
// v . . . .
|
|
// wHigh - - - - - - - - - - - - - - - - - - . . . .
|
|
// ^v 1 unit . . . .
|
|
// w --------------------------------------- . . . .
|
|
// ^v 1 unit v . . .
|
|
// wLow - - - - - - - - - - - - - - - - - - - - - . . .
|
|
// . . v
|
|
// buffer -------------------------------------------------+-------+--------
|
|
// . .
|
|
// safeInterval .
|
|
// v .
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
|
|
// ^v 1 unit .
|
|
// boundaryLow ------------------------- unsafeInterval
|
|
// ^v 1 unit v
|
|
// tooLow - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
//
|
|
//
|
|
// Note that the value of buffer could lie anywhere inside the range tooLow to tooHigh.
|
|
//
|
|
// boundaryLow, boundaryHigh and w are approximations of the real boundaries and v (the input number).
|
|
// They are guaranteed to be precise up to one unit.
|
|
// In fact the error is guaranteed to be strictly less than one unit.
|
|
//
|
|
// Anything that lies outside the unsafe interval is guaranteed not to round to v when read again.
|
|
// Anything that lies inside the safe interval is guaranteed to round to v when read again.
|
|
//
|
|
// If the number inside the buffer lies inside the unsafe interval but not inside the safe interval
|
|
// then we simply do not know and bail out (returning false).
|
|
//
|
|
// Similarly we have to take into account the imprecision of 'w' when finding the closest representation of 'w'.
|
|
// If we have two potential representations, and one is closer to both wLow and wHigh, then we know it is closer to the actual value v.
|
|
//
|
|
// By generating the digits of tooHigh we got the largest (closest to tooHigh) buffer that is still in the unsafe interval.
|
|
// In the case where wHigh < buffer < tooHigh we try to decrement the buffer.
|
|
// This way the buffer approaches (rounds towards) w.
|
|
//
|
|
// There are 3 conditions that stop the decrementation process:
|
|
// 1) the buffer is already below wHigh
|
|
// 2) decrementing the buffer would make it leave the unsafe interval
|
|
// 3) decrementing the buffer would yield a number below wHigh and farther away than the current number.
|
|
//
|
|
// In other words:
|
|
// (buffer{-1} < wHigh) && wHigh - buffer{-1} > buffer - wHigh
|
|
//
|
|
// Instead of using the buffer directly we use its distance to tooHigh.
|
|
//
|
|
// Conceptually rest ~= tooHigh - buffer
|
|
//
|
|
// We need to do the following tests in this order to avoid over- and underflows.
|
|
|
|
Debug.Assert(rest <= unsafeInterval);
|
|
|
|
while ((rest < smallDistance) && ((unsafeInterval - rest) >= tenKappa) && (((rest + tenKappa) < smallDistance) || ((smallDistance - rest) >= (rest + tenKappa - smallDistance))))
|
|
{
|
|
buffer[length - 1]--;
|
|
rest += tenKappa;
|
|
}
|
|
|
|
// We have approached w+ as much as possible.
|
|
// We now test if approaching w- would require changing the buffer.
|
|
// If yes, then we have two possible representations close to w, but we cannot decide which one is closer.
|
|
if ((rest < bigDistance) && ((unsafeInterval - rest) >= tenKappa) && (((rest + tenKappa) < bigDistance) || ((bigDistance - rest) > (rest + tenKappa - bigDistance))))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Weeding test.
|
|
//
|
|
// The safe interval is [tooLow + 2 ulp; tooHigh - 2 ulp]
|
|
// Since tooLow = tooHigh - unsafeInterval this is equivalent to
|
|
// [tooHigh - unsafeInterval + 4 ulp; tooHigh - 2 ulp]
|
|
//
|
|
// Conceptually we have: rest ~= tooHigh - buffer
|
|
return ((2 * unit) <= rest) && (rest <= (unsafeInterval - 4 * unit));
|
|
}
|
|
}
|
|
}
|
|
} |